• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Grid-Tied Solar Photovoltaic (PV) System with Battery storage : A Brief Techno-Economic Analysis

Basavalingappa, Sharat January 2019 (has links)
Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy(LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative. Most of the world’s electricity is being generated through conventional sources of energy like coal and nuclear. People are realizing the dire effect of using these fuels, and the amount of CO2 being released into the environment. Therefore, in recent year there has been a shift in emphasis towards cleaner ways of generating electricity. One such recent trend is solar photovoltaics (PV), which has seen rapid growth over the years. This ever-increasing trend of adopting PV system allows consumers to be producers or “Prosumers”. Due to the irregular production capability of solar PV, the need for an energy storage system like a battery bank is on the rise as well. This report evaluates how solar PV can be used in combination with a battery bank to supply the annual electricity demand for a household with little to no support from the grid. The building is assumed to be located in Bangalore, India. The energy demand for the household is estimated based on the requirements of a basic Indian house standard. The size and configuration of each component have been done with regards to the total load demand. Furthermore, the cost of the whole system is estimated in order to evaluate the feasibility of the grid-tied system from an economic perspective. The results show that a PV system consisting of four 270W solar panels, a battery bank of eight 150Ah lead-acid batteries and a 48V 4kW inverter is required to meet the annual energy demand of the house. The results show that from a technical standpoint, the above-mentioned technology is feasible. The results from the economic evaluation show that the localized cost of energy (LCOE) for the system is ₹6.01/kWh or € 0.078/kWh or 0.84SEK/kWh and the payback time for the given system is 16.19 years. On the bright side, there are new technological advancements in the PV field every day, which could mean that an energy system of this type can be an achievable and practical alternative.
2

SMART VAR Generator to Manage Grid Voltage Stability issue of Low Frequency Switching Photovoltaic Inverters

Perera, Sam Prasanna Kurukulasuriya, Kachchakaduge, Sumith Ruwan Dharmasiri January 2015 (has links)
Solar power, clean and abundant, is considered as a vital contributor in the effort of transforming world energy-mix to pollution-free and natural-regenerative sources.   The solar micro inverters have gained greater visibility during the past several years due to their higher efficiency, greater performances, longer life expectancy and many other benefits. But, integrating small scale [<15kW] renewable energy sources, especially the low frequency switching solar inverters to the low voltage distribution grid has its own challenges due to their inability to generate reactive power to maintain the static voltage stability of the grid. Higher level of solar penetration has identified as a potential cause of low voltage grid instability due to lack of reactive power feeding and their tendency to keep on increasing the voltage higher than grid at the point of common connection [PCC] in order to inject the current to the grid. The studies and experience in voltage stability issues has resulted in introducing many new grid regulations to manage the grid voltage stability throughout the world. The new regulation, VDE-AR-N-4105-2011 is a German grid regulation standard specifically focuses on the low voltage grid connected power generators. This regulation has addressed the reactive power requirements in terms of power factor and supply management to maintain the grid static voltage variation less than 3% at the PCC, when connecting any type of distributed power generators to the low voltage network. This report discuss about the voltage stability issues related to low frequency switching inverters and present a solution to comply with low voltage grid regulation - VDE-AR-N-4105-2011; a SmartVar Generator concept, theory, design and functionality.
3

SINGLE PHASE MULTILEVEL INVERTER FOR GRID-TIED PHOTOVOLTAIC SYSTEMS

Prichard, Martin Edward 01 January 2015 (has links)
Multilevel inverters offer many well-known advantages for use in high-voltage and high-power applications, but they are also well suited for low-power applications. A single phase inverter is developed in this paper to deliver power from a residential-scale system of Photovoltaic panels to the utility grid. The single-stage inverter implements a novel control technique for the reversing voltage topology to produce a stepped output waveform. This approach increases the granularity of control over the PV systems, modularizing key components of the inverter and allowing the inverter to extract the maximum power from the systems. The adaptive controller minimizes harmonic distortion in its output and controls the level of reactive power injected to the grid. A computer model of the controller is designed and tested in the MATLAB program Simulink to assess the performance of the controller. To validate the results, the performance of the proposed inverter is compared to that of a comparable voltage-sourced inverter.
4

High Efficiency Single-stage Grid-tied PV Inverter for Renewable Energy System

Zhao, Zheng 21 May 2012 (has links)
A single-phase grid connected transformerless photovoltaic (PV) inverter for residential application is presented. The inverter is derived from a boost cascaded with buck converter along with a line frequency unfolding circuit. Due to its novel operating modes, high efficiency can be achieved because there is only one switch operating at high frequency at a time, and the converter allows the use of power MOSFET and ultra-fast reverse recovery diode. This dissertation begins with theoretical analysis and modeling of this boost-buck converter based inverter. And the model indicates small boost inductance will leads to increase the resonant pole frequency and decrease the peak of Q, which help the system be controlled easier and more stable. Thus, interleaved multiple phases structure is proposed to have small equivalent inductance, meanwhile the ripple can be decreased, and the inductor size can be reduced as well. A two-phase interleaved inverter is then designed accordingly. The double-carrier modulation method is proposed based on the inverter's operation mode. The duty cycle for buck switch is always one if the inverter is running in boost mode. And the duty cycle for boost switches are always zero if the inverter is running in buck mode. Because of this, the carrier for boost mode is stacked on the top of the carrier for buck mode, as a result, there is no need to compare the input and output voltage to decide which mode the inverter should operate in. And the inverter operates smoothly between these two modes. Based on similar concept, three advanced modulation methods are proposed. One of them can help further improve the efficiency, and one of them can help increase the bandwidth and gain, and the last one takes the advantage of both. Based on similar concept, another three dual-mode double-carrier based SPWM inverters are proposed. With both step-up and step-down functions, this type of inverter can achieve high efficiency in a wide range because only one switch operates at the PWM frequency at a time. Finally, the simulation and experiment results are shown to verify the concept and the tested CEC (California Energy Commission) efficiency is 97.4%. It performs up to 2% more efficiently better than the conventional solution. / Ph. D.
5

Evaluation and implementation of anti-islanding methods for converter-fed distributed generation

Hobbs, Ivan Kevin 12 1900 (has links)
MScEng / Thesis (MScEng (Electrical and Electronic Engineering))--Univerity of Stellenbosch, 2009. / ENGLISH ABSTRACT: As the number of distributed generation units connected to a distribution network increase, the possibility of island formation increases. An island is formed when distributed generation units continue to energize local loads within a section of the grid, which has been disconnected from the main distribution network. These islands pose significant danger to maintenance personnel as well as to members of the public. In this study, an investigation is done into various anti-islanding methods. The modes of operation of these methods are discussed, as well as their strengths and weaknesses. The slip-mode frequency shift method and the Sandia voltage shift method, in combination with over/under voltage and frequency protection, are simulated and tested to confirm their functionality. The results obtained show that it is possible to prevent distributed generation units from energizing local loads when the grid is disconnected. / AFRIKAANSE OPSOMMING: Die moontlike toekomstige toename in die aantal verspreide generasie eenhede gekoppel aan die verspreidings netwerk, verhoog die moontlikheid van eiland vorming. ‘n Eiland word gevorm wanneer verspreide generasie eenhede energie aan lokale laste voorsien nadat die netwerk ontkoppel is. Dit hou groot gevaar in vir onderhouds personeel asook vir die publiek. In die tesis word ‘n studie gedoen oor die verskillende metodes om die vorming van ongewensde eilande te voorkom. Die glipmode-frekwensieskuif metode en die Sandia spanningskuif metode word gekombineer met die oor/onder spanning en frekwensie beskerming metodes. Die kombinasie van metodes word dan gesimuleer en eksperimenteel getoets. Die verkrygde resultate toon dat dit moontlik is om die vorming van ongewensde eilande effektief te voorkom.
6

Conversor multifuncional conectado à rede elétrica para compensação de oscilações de potência instantânea /

Olímpio Filho, José de Arimatéia January 2019 (has links)
Orientador: Helmo Kelis Morales Paredes / Resumo: Esta dissertação de mestrado propõe o desenvolvimento e a implementação de uma estratégia de compensação para conversores eletrônicos de potência (CEP) multifuncionais conectados à rede elétrica. A geração dos sinais de referência de corrente para o conversor multifuncional é obtida através das grandezas conservativas da CPT, do inglês Conservative Power Theory. O CEP proposto neste trabalho desempenha o papel de um conversor interface de rede no modo conectado, tendo como finalidade a mitigação de oscilações de potência instantânea bem como injeção de potência ativa na rede elétrica, caracterizando assim o seu aspecto multifuncional. São realizados estudos teóricos e simulações computacionais com o intuito de validar a estratégia proposta. Para tanto, foram identificadas as parcelas indesejadas de corrente que permitam a compensação das componentes oscilatórias da potência instantânea e da energia reativa instantânea da CPT. O CEP é controlado em modo corrente, através da estratégia de modulação PWM com duas malhas de controle. A estratégia de compensação e o sistema de controle serão avaliados e testados via simulação para diferentes configurações de cargas, incluindo uma carga não-linear desbalanceada operando em condições onde as distorções e desequilíbrios de tensão sejam consideráveis. Por fim, resultados experimentais obtidos com um protótipo em escala laboratorial são utilizados para validar a estratégia de compensação proposta / Abstract: This master’s thesis proposes the development and implementation of a compensation strategy for the three-phase multifunctional grid-tied inverter. The reference signal generation method for grid-tied is based on the Conservative Power Theory (CPT). In this work, the multifunctional inverter plays the role of the Utility Interface (UI) which perform several functions: in grid-connected operation, it injects active power into the grid and compensates the instantaneous power oscillation and the instantaneous reactive energy oscillation. The goal is to execute theoretical studies and computational simulations to validate the proposed strategy. For this purpose, firstly are identifies the unwanted currents which allow the compensation of the oscillatory terms of instantaneous power and reactive energy. The inverter is controlled in current mode through PWM modulation strategy with two control loops. In addition, the proposed compensation strategy and control system is evaluated and tested for different load configurations, such as linear and nonlinear loads (balanced and unbalanced) operating under different voltage conditions (distorted and unbalanced). Finally, experimental results are presented to validate the effectiveness and performance of the proposed compensation strategy. / Mestre
7

Integrated CM Filter for Single-Phase and Three-Phase PWM Rectifiers

Hedayati, Mohammad Hassan January 2015 (has links) (PDF)
The use of insulated-gate bipolar transistor (IGBT)-based power converters is increasing exponentially. This is due to high performance of these devices in terms of efficiency and switching speed. However, due to the switching action, high frequency electromagnetic interference (EMI) noises are generated. Design of a power converter with reduced EMI noise level is one of the primary objectives of this research. The first part of the work focuses on designing common-mode (CM) filters, which can be integrated with differential-mode (DM) filters for three-phase pulse-width modulation (PWM) rectifier-based motor drives. This work explores the filter design based on the CM equivalent circuit of the drive system. Guidelines are provided for selection of the filter components. Different variants of the filter topology are evaluated to establish the effectiveness of the proposed topology. Analytical results based on Bode plot of the transfer functions are presented, which suggest effective EMI reduction. Experimental results based on EMI measurement on the grid side and CM current measurement on the motor side are presented. These results validate the effectiveness of the filter. In the second part of the work, it is shown that inclusion of CM filters into DM filters results in resonance oscillations in the CM circuit. An active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground ac voltages and currents. An approach based on pole placement by state feedback is used to actively damp both the DM and CM filter oscillations. Analytical expressions for state-feedback controller gains are derived for both continuous-and discrete-time models of the filter. Trade-off in selection of the active damping gain on the lower-order grid current harmonics is analysed using a weighted admittance function method. In the third part of the work, single-phase grid-connected power converters are considered. An integrated CM filter with DM LCL filter is proposed. The work explores the suitability of PWM methods for single-phase and parallel single-phase grid-connected power converters. It is found that bipolar PWM and unipolar PWM with 180◦interleaving angle are suitable for single-phase and parallel single-phase power converters, respectively. The proposed configuration along with the PWM methods reduces the CM voltage, CM current, and EMI noise level effectively. It is also shown that the suggested circuit is insensitive to nonidealities of the power converter such as dead-time mismatch, mismatch in converter-side inductors, unequal turn on and turn off of the switches, and propagation delays. In the fourth part of the work, the inter-phase inductor in parallel interleaved power converters is integrated with LCL filter boost inductor. Different variant designs are presented and compared with the proposed structure. It is shown that the proposed structure makes use of standard core geometries and consumes lesser core material as well as copper wire. Hence, it reduces the overall size and cost of the power converter. In the present work, a 10kVA three-phase back-to-back connected with input LCL filter and output dv/dt filter, a 5kVA single-phase grid-connected power converter with LCL filter, and a 7.5kVA parallel single-phase grid-connected power converter with LCL filter are fabricated in the laboratory to evaluate and validate the proposed methods. The experimental results validate the proposed methods that result in significant EMI performance improvement of grid-connected power converters.
8

Energy conversion unit with optimized waveform generation

Sajadian, Sally January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The substantial increase demand for electrical energy requires high efficient apparatus dealing with energy conversion. Several technologies have been suggested to implement power supplies with higher efficiency, such as multilevel and interleaved converters. This thesis proposes an energy conversion unit with an optimized number of output voltage levels per number of switches nL=nS. The proposed five-level four-switch per phase converter has nL=nS=5/4 which is by far the best relationship among the converters presented in technical literature. A comprehensive literature review on existing five-level converter topologies is done to compare the proposed topology with conventional multilevel converters. The most important characteristics of the proposed configuration are: (i) reduced number of semiconductor devices, while keeping a high number of levels at the output converter side, (ii) only one DC source without any need to balance capacitor voltages, (iii) high efficiency, (iv) there is no dead-time requirement for the converters operation, (v) leg isolation procedure with lower stress for the DC-link capacitor. Single-phase and three-phase version of the proposed converter is presented in this thesis. Details regarding the operation of the configuration and modulation strategy are presented, as well as the comparison between the proposed converter and the conventional ones. Simulated results are presented to validate the theoretical expectations. In addition a fault tolerant converter based on proposed topology for micro-grid systems is presented. A hybrid pulse-width-modulation for the pre-fault operation and transition from the pre-fault to post-fault operation will be discussed. Selected steady-state and transient results are demonstrated to validate the theoretical modeling.

Page generated in 0.2288 seconds