1 |
Near-Fault Forward-Directivity Aspects of Strong Ground Motions in the 2010-11 Canterbury EarthquakesJoshi, Varun Anil January 2013 (has links)
The purpose of this thesis is to conduct a detailed examination of the forward-directivity characteristics of near-fault ground motions produced in the 2010-11 Canterbury earthquakes, including evaluating the efficacy of several existing empirical models which form the basis of frameworks for considering directivity in seismic hazard assessment.
A wavelet-based pulse classification algorithm developed by Baker (2007) is firstly used to identify and characterise ground motions which demonstrate evidence of forward-directivity effects from significant events in the Canterbury earthquake sequence. The algorithm fails to classify a large number of ground motions which clearly exhibit an early-arriving directivity pulse due to: (i) incorrect pulse extraction resulting from the presence of pulse-like features caused by other physical phenomena; and (ii) inadequacy of the pulse indicator score used to carry out binary pulse-like/non-pulse-like classification. An alternative ‘manual’ approach is proposed to ensure 'correct' pulse extraction and the classification process is also guided by examination of the horizontal velocity trajectory plots and source-to-site geometry. Based on the above analysis, 59 pulse-like ground motions are identified from the Canterbury earthquakes , which in the author's opinion, are caused by forward-directivity effects. The pulses are also characterised in terms of their period and amplitude. A revised version of the B07 algorithm developed by Shahi (2013) is also subsequently utilised but without observing any notable improvement in the pulse classification results.
A series of three chapters are dedicated to assess the predictive capabilities of empirical models to predict the: (i) probability of pulse occurrence; (ii) response spectrum amplification caused by the directivity pulse; (iii) period and amplitude (peak ground velocity, PGV) of the directivity pulse using observations from four significant events in the Canterbury earthquakes. Based on the results of logistic regression analysis, it is found that the pulse probability model of Shahi (2013) provides the most improved predictions in comparison to its predecessors. Pulse probability contour maps are developed to scrutinise observations of pulses/non-pulses with predicted probabilities.
A direct comparison of the observed and predicted directivity amplification of acceleration response spectra reveals the inadequacy of broadband directivity models, which form the basis of the near-fault factor in the New Zealand loadings standard, NZS1170.5:2004. In contrast, a recently developed narrowband model by Shahi & Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods. The significant positive bias demonstrated by the residuals associated with all models at longer vibration periods (in the Mw7.1 Darfield and Mw6.2 Christchurch earthquakes) is likely due to the influence of basin-induced surface waves and non-linear soil response.
Empirical models for the pulse period notably under-predict observations from the Darfield and Christchurch earthquakes, inferred as being a result of both the effect of nonlinear site response and influence of the Canterbury basin. In contrast, observed pulse periods from the smaller magnitude June (Mw6.0) and December (Mw5.9) 2011 earthquakes are in good agreement with predictions. Models for the pulse amplitude generally provide accurate estimates of the observations at source-to-site distances between 1 km and 10 km. At longer distances, observed PGVs are significantly under-predicted due to their slower apparent attenuation. Mixed-effects regression is employed to develop revised models for both parameters using the latest NGA-West2 pulse-like ground motion database. A pulse period relationship which accounts for the effect of faulting mechanism using rake angle as a continuous predictor variable is developed. The use of a larger database in model development, however does not result in improved predictions of pulse period for the Darfield and Christchurch earthquakes. In contrast, the revised model for PGV provides a more appropriate attenuation of the pulse amplitude with distance, and does not exhibit the bias associated with previous models.
Finally, the effects of near-fault directivity are explicitly included in NZ-specific probabilistic seismic hazard analysis (PSHA) using the narrowband directivity model of Shahi & Baker (2011). Seismic hazard analyses are conducted with and without considering directivity for typical sites in Christchurch and Otira. The inadequacy of the near-fault factor in the NZS1170.5: 2004 is apparent based on a comparison with the directivity amplification obtained from PSHA.
|
2 |
Site amplification model for use in ground motion prediction equationsNavidi, Sara 12 February 2013 (has links)
The characteristics of earthquake shaking are affected by the local site conditions. The effects of the local soil conditions are often quantified via an amplification factor (AF), which is defined as the ratio of the ground motion at the soil surface to the ground motion at a rock site at the same location. Amplification factors can be defined for any ground motion parameter, but most commonly are assessed for acceleration response spectral values at different oscillator periods. Site amplification can be evaluated for a site by conducting seismic site response analysis, which models the wave propagation from the base rock through the site-specific soil layers to the ground surface. An alternative to site-specific seismic response analysis is site amplification models. Site amplification models are empirical equations that predict the site amplification based on general characteristics of the site. Most of the site amplification models that already used in ground motion prediction equations characterize a site with two parameters: the average shear wave velocity in the top 30 m (VS30) and the depth to bedrock. However, additional site parameters influence site amplification and should be included in site amplification models.
To identify the site parameters that help explain the variation in site amplification, ninety nine manually generated velocity profiles are analyzed using seismic site response analysis. The generated profiles have the same VS30 and depth to bedrock but a different velocity structure in the top 30 m. Different site parameters are investigated to explain the variability in the computed amplification. The parameter Vratio, which is the ratio of the average shear wave velocity between 20 m and 30 m to the average shear wave velocity in the top 10 m, is identified as the site parameter that most affects the computed amplification for sites with the same VS30 and depth to bedrock.
To generalize the findings from the analyses in which only the top 30 m of the velocity profile are varied, a suite of fully randomized velocity profiles are generated and site response analysis is used to compute the amplification for each site for a range of input motion intensities. The results of the site response analyses conducted on these four hundred fully randomized velocity profiles confirm the influence of Vratio on site amplification. The computed amplification factors are used to develop an empirical site amplification model that incorporates the effect of Vratio, as well as VS30 and the depth to bedrock. The empirical site amplification model includes the effects of soil nonlinearity, such that the predicted amplification is a function of the intensity of shaking. The developed model can be incorporated into the development of future ground motion prediction equations. / text
|
3 |
Seismic Slope Stability: A Comparison Study of Empirical Predictive Methods with the Finite Element MethodCopana Paucara, Julio 05 November 2020 (has links)
This study evaluates the seismically induced displacements of a slope using the Finite Element Method (FEM) in comparison to the results of twelve empirical predictive approaches. First, the existing methods to analyze the stability of slopes subjected to seismic loads are presented and their capabilities to predict the onset of failure and post-failure behavior are discussed. These methods include the pseudostatic method, the Newmark method, and stress-deformation numerical methods. Whereas the pseudostatic method defines a seismic coefficient for the analysis and provides a safety factor, the Newmark method incorporates a yield coefficient and the actual acceleration time history to estimate permanent displacements. Numerical methods incorporate advanced constitutive models to simulate the coupled stress-strain soil behavior, making the process computationally more costly. In this study, a model slope previously studied at laboratory scale is selected and scaled up to prototype dimensions. Then, the slope is subjected to 88 different input motions, and the seismic displacements obtained from the numerical and empirical approaches are compared statistically. From correlation analyses between seven ground motion parameters and the numerical results, new empirical predictive equations are developed for slope displacements. The results show that overall the FEM displacements are generally in agreement with the numerically developed methods by Fotopoulou and Pitilakis (2015) labelled "Method 2" and "Method 3", and the Newmark-type Makdisi and Seed (1978) and Bray and Travasarou (2007) methods for rigid slopes. Finally, functional forms for seismic slope displacement are proposed as a function of peak ground acceleration (PGA), Arias intensity (Ia), and yield acceleration ratio (Ay/PGA). These functions are expected to be valid for granular slopes such as earth dams, embankments, or landfills built on a rigid base and with low fundamental periods (Ts<0.2). / Master of Science / A landslide is a displacement on a sloped ground that can be triggered by earthquake shaking. Several authors have investigated the failure mechanisms that lead to landslide initiation and subsequent mass displacement and proposed methodologies to assess the stability of slopes subjected to seismic loads. The development of these methodologies has to rely on field data that in most of the cases are difficult to obtain because identifying the location of future earthquakes involves too many uncertainties to justify investments in field instrumentation (Kutter, 1995). Nevertheless, the use of scale models and numerical techniques have helped in the investigation of these geotechnical hazards and has led to development of equations that predict seismic displacements as function of different ground motion parameters. In this study, the capabilities and limitations of the most recognized approaches to assess seismic slope stability are reviewed and explained. In addition, a previous shaking-table model is used for reference and scaled up to realistic proportions to calculate its seismic displacement using different methods, including a Finite Element model in the commercial software Plaxis2D. These displacements are compared statistically and used to develop new predictive equations. This study is relevant to understand the capabilities of newer numerical approaches in comparison to classical empirical methods.
|
4 |
Ground Motion Prediction Equations for Non-Spectral Parameters using the KiK-net DatabaseBahrampouri, Mahdi 24 August 2017 (has links)
The KiK-net ground motion database is used to develop ground motion prediction equations for Arias Intensity (I<sub>a</sub>), 5-95% Significant Duration (Ds<sub>5-95</sub>), and 5-75% Significant Duration (Ds<sub>5-75</sub>). Relationships are developed both for shallow crustal earthquakes and subduction zone earthquakes (hypocentral depth less than 45 km). The models developed consider site amplification using V<sub>S30</sub> and the depth to a layer with V<sub>S</sub>=800 m/s (h₈₀₀). We observe that the site effect for I<sub>α</sub> is magnitude dependent. For Ds<sub>5-95</sub> and Ds<sub>5-75</sub>, we also observe strong magnitude dependency in distance attenuation. We compare the results with previous GMPEs for Japanese earthquakes and observe that the relationships are similar. The results of this study also allow a comparison between earthquakes in shallow-crustal regions, and subduction regions. This comparison shows that Arias Intensity has similar magnitude and distance scaling between both regions and generally Arias Intensity of shallow crustal motions are higher than subduction motions. On the other hand, the duration of shallow crustal motions are longer than subduction earthquakes except for records with large distance and small magnitude causative earthquakes. Because small shallow crustal events saturate with distance, ground motions with large distances and small magnitudes have shorter duration for shallow crustal events than subduction earthquakes. / This thesis presents the development of new Ground Motion Prediction Equations (GMPEs) for the prediction of the duration and the Arias Intensity of earthquake strong motions. . Arias Intensity is an index for the energy in the ground motion. The GMPEs are based on the Japanese KiK-net database. Based on the causative earthquake source, source to site path, and site properties, GMPEs give estimation of the mean and standard deviation of the parameters. This information is necessary for conducting probabilistic seismic hazard analyses.
The characteristics of the ground motions with the same magnitude and source to site distance vary amongst different tectonic regimes. For this reason, we develop different GMPEs for earthquakes from different tectonic regimes (subduction zone and shallow crustal earthquakes). The primary motivation for this research is that no existing GMPEs for duration are directly applicable to subduction-zone earthquakes. In addition, because the same stations recorded both types of events, we can directly compare the effect of tectonic environment on the selected ground motion parameters. The estimation of mean duration and mean Arias intensity made by this study show while magnitude and distance scaling of Arias Intensity is the same for shallow crustal and subduction earthquakes, the tectonic regime has a significant effect on duration of ground motion.
|
5 |
Global Structure of the Mantle Transition Zone Discontinuities and Site Response Effects in the Atlantic and Gulf Coastal PlainGuo, Zhen 03 September 2019 (has links)
This thesis focuses on two different topics in seismology: imaging the global structures of the mantle transition zone discontinuities and studying the site response effects in the Atlantic and Gulf Coastal Plain.
Global structures of the mantle transition zone discontinuities provide important constraints on thermal structures and dynamic processes in the mid mantle. In this thesis, global topographic structures of the 410- and 660-km discontinuities are obtained from finite-frequency tomography of SS precursors. The finite-frequency sensitivities of SS waves and precursors are calculated based on a single-scattering (Born) approximation and can be used for data selection. The new global models show a number of smaller-scale features that were absent in back-projection models. Good correlation between the mantle transition zone thickness and wave speed variations suggests dominantly thermal origins for the lateral variations in the transition zone.
The high-resolution global models of the 410- and 660-km discontinuities in this thesis show strong positive correlation beneath western North America and eastern Asia subduction zones with both discontinuities occurring at greater depths. Wavespeed and anisotropy models support vertical variations in thermal structure in the mid mantle, suggesting return flows from the lower mantle occur predominantly in the vicinity of stagnant slabs and the region overlying the stagnant slabs. In oceanic regions, the two discontinuities show a weak anti-correlation, indicating the existence of a secondary global far-field return flow.
The Atlantic and Gulf Coastal Plain is covered by extensive Cretaceous and Cenozoic marine sediments. In this thesis, the site response effects of sediments in the Coastal Plain region relative to the reference condition outside that region are investigated using Lg and coda spectral ratios. The high-frequency attenuation factors (kappa) in the Coastal Plain are strongly correlated with the sediment thickness. At frequencies between 0.1-2.86 Hz, the Lg spectral ratio amplitudes are modeled as functions of frequency and thickness of the sediments in the Coastal Plain. Analysis of the residuals from the stochastic ground motion prediction method suggests that incorporating the site response effects as functions of sediment thickness may improve ground motion prediction models for the Coastal Plain region. / Doctor of Philosophy / The mantle transition zone is the region in the Earth’s interior between depths of ∼410 km and ∼660 km. The structure of the mantle transition zone plays an important role in understanding temperature variations and mass exchanges in the interior of the Earth. This dissertation aims at resolving depth variations of the top and bottom boundaries of the mantle transition zone at a global scale using underside reflected seismic waves. The advanced method used here resolved stronger small-scale depth variations of the boundaries than a conventional method using the same dataset. The two mantle transition zone boundaries both occur at depths greater than the global average beneath eastern Asia and western North America where cold oceanic lithosphere subducted under the continents. This positively correlated behaviors of the two boundaries agree with a scenario where cold subducted slabs have been horizontally deflected and stagnant above the bottom boundary of the mantle transition zone while hot materials beneath the mantle transition zone flow upwards due to the stagnant slabs penetrating the bottom boundary of the mantle transition zone. This dissertation also provides an examination of the differences between response of earthquake ground shaking in the Atlantic and Gulf Coastal Plain and that outside the Coastal Plain using seismic-wave spectral ratios. Ground shaking in the Coastal Plain is found to be amplified at low frequencies and de-amplified at high frequencies relative to that outside the Coastal Plain due to the extensive marine sediments in the Coastal Plain region. The amplification and attenuation factors can be estimated from spectral ratios and are found to be strongly correlated with the sediment thickness in the Coastal Plain. The spectral ratio functions derived in this dissertation may be adopted by studies on analyzing the seismic hazard in the Central and Eastern United States.
|
6 |
Partitioning Uncertainty for Non-Ergodic Probabilistic Seismic Hazard AnalysesDawood, Haitham Mohamed Mahmoud Mousad 29 October 2014 (has links)
Properly accounting for the uncertainties in predicting ground motion parameters is critical for Probabilistic Seismic Hazard Analyses (PSHA). This is particularly important for critical facilities that are designed for long return period motions. Non-ergodic PSHA is a framework that allows for this proper accounting of uncertainties. This, in turn, allows for more informed decisions by designers, owners and regulating agencies.
The ergodic assumption implies that the standard deviation applicable to a specific source-path-site combination is equal to the standard deviation estimated using a database with multiple source-path-site combinations. The removal of the ergodic assumption requires dense instrumental networks operating in seismically active zones so that a sufficient number of recordings are made. Only recently, with the advent of networks such as the Japanese KiK-net network has this become possible. This study contributes to the state of the art in earthquake engineering and engineering seismology in general and in non-ergodic seismic hazard analysis in particular. The study is divided in for parts. First, an automated protocol was developed and implemented to process a large database of strong ground motions for GMPE development. A comparison was conducted between the common records in the database processed within this study and other studies. The comparison showed the viability of using the automated algorithm to process strong ground motions. On the other hand, the automated algorithm resulted in narrower usable frequency bandwidths because of the strict criteria adopted for processing the data. Second, an approach to include path-specific attenuation rates in GMPEs was proposed. This approach was applied to a subset of the KiK-net database. The attenuation rates across regions that contains volcanoes was found to be higher than other regions which is in line with the observations of other researchers. Moreover, accounting for the path-specific attenuation rates reduced the aleatoric variability associated with predicting pseudo-spectral accelerations. Third, two GMPEs were developed for active crustal earthquakes in Japan. The two GMPEs followed the ergodic and site-specific formulations, respectively. Finally, a comprehensive residual analysis was conducted to find potential biases in the residuals and propose models to predict some components of variability as a function of some input parameters. / Ph. D.
|
7 |
Topographic Effects in Strong Ground MotionRai, Manisha 14 September 2015 (has links)
Ground motions from earthquakes are known to be affected by earth's surface topography. Topographic effects are a result of several physical phenomena such as the focusing or defocusing of seismic waves reflected from a topographic feature and the interference between direct and diffracted seismic waves. This typically causes an amplification of ground motion on convex features such as hills and ridges and a de-amplification on concave features such as valleys and canyons. Topographic effects are known to be frequency dependent and the spectral accelerations can sometimes reach high values causing significant damages to the structures located on the feature. Topographically correlated damage pattern have been observed in several earthquakes and topographic amplifications have also been observed in several recorded ground motions. This phenomenon has also been extensively studied through numerical analyses. Even though different studies agree on the nature of topographic effects, quantifying these effects have been challenging. The current literature has no consensus on how to predict topographic effects at a site. With population centers growing around regions of high seismicity and prominent topographic relief, such as California, and Japan, the quantitative estimation of the effects have become very important. In this dissertation, we address this shortcoming by developing empirical models that predict topographic effects at a site. These models are developed through an extensive empirical study of recorded ground motions from two large strong-motion datasets namely the California small to medium magnitude earthquake dataset and the global NGA-West2 datasets, and propose topographic modification factors that quantify expected amplification or deamplification at a site.
To develop these models, we required a parameterization of topography. We developed two types of topographic parameters at each recording stations. The first type of parameter is developed using the elevation data around the stations, and comprise of parameters such as smoothed slope, smoothed curvature, and relative elevation. The second type of parameter is developed using a series of simplistic 2D numerical analysis. These numerical analyses compute an estimate of expected 2D topographic amplification of a simple wave at a site in several different directions. These 2D amplifications are used to develop a family of parameters at each site. We study the trends in the ground motion model residuals with respect to these topographic parameters to determine if the parameters can capture topographic effects in the recorded data. We use statistical tests to determine if the trends are significant, and perform mixed effects regression on the residuals to develop functional forms that can be used to predict topographic effect at a site. Finally, we compare the two types of parameters, and their topographic predictive power. / Ph. D.
|
8 |
Gis Based Seismic Hazard Mapping Of TurkeyYunatci, Ali Anil 01 October 2010 (has links) (PDF)
Efficiency of probabilistic seismic hazard analysis mainly depends on the individual successes of its complementing components / such as source characterization and ground motion intensity prediction. This study contributes to major components of the seismic hazard workflow including magnitude &ndash / rupture dimension scaling relationships, and ground motion intensity prediction. The study includes revised independent models for predicting rupture dimensions in shallow crustal zones, accompanied by proposals for geometrically compatible rupture area-length-width models which satisfy the rectangular rupture geometry assumption. Second main part of the study focuses on developing a new ground motion prediction model using data from Turkish strong ground motion database. The series of efforts include, i) compilation and processing of a strong motion dataset, ii) quantifying parameter uncertainties of predictive parameters such as magnitude and source to site distance / and predicted accelerations due to uncertainty in site conditions and response, as well as uncertainty due to random orientation of the sensor, iii) developing a ground response model as a continuous function of peak ground acceleration and shear wave velocity, and finally, iv) removing bias in predictions due to uneven sampling of the dataset. Auxiliary components of the study include a systematic approach to source characterization problem, with products ranging from description of systematically idealized and documented seismogenic faults in Anatolia, to delineation, magnitude-recurrence parameterization, and selection of maximum magnitude earthquakes. Last stage of the study covers the development of a custom computer code for probabilistic seismic hazard assessment which meets the demands of modern state of practice.
|
9 |
Estimation des mouvements sismiques et de leur variabilité par approche neuronale : Apport à la compréhension des effets de la source, de propagation et de site / Ground-motion prediction and their variability through neural approach : Physical insight into source, path and site effectsDerras, Boumédiène 11 May 2017 (has links)
Cette thèse est consacrée à une analyse approfondie de la capacité des "réseaux de neurones artificiels" (RNA) à la prédiction des mouvements sismiques. Un premier volet important concerne la dérivation par RNA de "GMPE" (équations de prédiction du mouvement du sol) et la comparaison des performances ainsi obtenues avec celles des GMPE "classiques" obtenues sur la base de régressions empiriques avec une forme fonctionnelle préétablie (plus ou moins complexe). Pour effectuer l’étude comparative et obtenir les deux composnates inter-événement « betweeen-event » et intra-événement « within-event » de la variabilité aléatoire, nous intégrons l’algorithme du « modèle à effets aléatoires » à l’approche neuronale. Cette approche est testée sur différents jeux de données réelles et synthétiques : la base de données compilée à partir d'événements européens, méditerranéens et du Moyen-Orient (RESORCE : Reference database for Seismic grOund-motion pRediction in Europe), la base de données NGA-West 2 (Next Generation Attenuation West 2 développée aux USA), la base de données japonaise dérivée du réseau accélérométrique KiK-net. En outre, un set de données synthétiques provenant d'une approche par simulation stochastique est utilisé. Les paramètres du mouvement du sol les plus utilisés en génie parasismique (PGA, PGV, spectres de réponse et également, dans certains cas, les fonctions d'amplification locales) sont considérés. Les modèles neuronaux ainsi obtenus, complètement dirigés par les données « data-driven », nous renseignent sur les influences respectives et éventuellement couplées de l’atténuation avec la distance, de l'effet d’échelle lié à la magnitude, des conditions de site et notamment la présence éventuelle de non-linéarités. Un autre volet important est consacré à l'utilisation des RNA pour tester la pertinence de différents proxies de site, au travers de leur capacité à réduire la variabilité aléatoire des prédictions de mouvement du sol. Utilisés individuellement ou en couple, ces proxies de site décrivent de manière plus ou moins détaillée l'influence des conditions de site locales sur le mouvement sismique. Dans ce même volet, nous amorçons également une étude des liens entre les aspects non-linéaire de la réponse de site, et les différents proxies de site. Le troisième volet se concentre sur certain effets liés à la source : analyse de l’influence du style de la faille sismique sur le mouvement du sol, ainsi qu'une approche indirecte de la dépendance entre la magnitude et la chute de contrainte sismique. / This thesis is devoted to an in-depth analysis of the ability of "Artificial Neural Networks" (ANN) to achieve reliable ground motion predictions. A first important aspect concerns the derivation of "GMPE" (Ground Motion Prediction Equations) with an ANN approach, and the comparison of their performance with those of "classical" GMGEs derived on the basis of empirical regressions with pre-established, more or less complex, functional forms. To perform such a comparison involving the two "betweeen-event" and "within-event" components of the random variability, we adapt the algorithm of the "random effects model" to the neural approach. This approach is tested on various, real and synthetic, datasets: the database compiled from European, Mediterranean and Middle Eastern events (RESORCE: Reference database for Seismic grOund-motion pRediction in Europe), the database NGA West 2 (Next Generation Attenuation West 2 developed in the USA), and the Japanese database derived from the KiK-net accelerometer network. In addition, a comprehensive set of synthetic data is also derived with a stochastic simulation approach. The considered ground motion parameters are those which are most used in earthquake engineering (PGA, PGV, response spectra and also, in some cases, local amplification functions). Such completely "data-driven" neural models, inform us about the respective, and possibly coupled, influences of the amplitude decay with distance, the magnitude scaling effects, and the site conditions, with a particular focus on the detection of non-linearities in site response. Another important aspect is the use of ANNs to test the relevance of different site proxies, through their ability to reduce the random variability of ground motion predictions. The ANN approach allows to use such site proxies either individually or combined, and to investigate their respective impact on the various characteristics of ground motion. The same section also includes an investigation on the links between the non-linear aspects of the site response and the different site proxies. Finally, the third section focuses on a few source-related effects: analysis of the influence of the "style of faulting" on ground motion, and, indirectly, the dependence between magnitude and seismic stress drop.
|
10 |
New Ground Motion Prediction Equations for Saudi Arabia and their Application to Probabilistic Seismic Hazard Analysis / サウジアラビアにおける地震動予測式の構築と確率論的地震動予測への適用Kiuchi, Ryota 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22259号 / 理博第4573号 / 新制||理||1657(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 James Mori, 教授 久家 慶子, 教授 岩田 知孝 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
Page generated in 0.1387 seconds