• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Geological and Geochemical Controls on Non-Tuberculous Mycobacterium Transmission: Examples from Hawaii

Robinson, Schuyler Thomas 01 June 2019 (has links)
The opportunistic environmental microbes, non-tuberculous Mycobacterium (NTM), pose an increasing risk of disease and death in both immunodeficient and immunocompetent individuals in the USA and across the world. NTM lung disease is particularly prevalent in Hawaii, although the modes of NTM acquisition and transport in Hawaii are not fully understood. This study evaluated 149 soil and 50 water samples across the Hawaiian Islands to determine geochemical factors controlling NTM. Non-metric multidimensional scaling (NMDS) and principal component analyses (PCA) of modern soils show variables such as Total Organic Carbon (TOC), pH, P, mafic silicate minerals, and Pb seem to control NTM presence and transition metals and oxides such as TiO2, Zr, and Nb seem to control the absence perhaps due to toxicity. Logistic regression modeling coupled with Kolmogorov-Smirnov testing supported that TOC and P could be used to explain the probability of NTM presence in modern soils. Kolmogorov-Smirnov, non-metric multidimensional scaling, and principal components analysis results suggest poor predictability of NTM presence in soils when evaluating mineralogy alone. The same statistical methods indicated that transition metals appeared to control NTM presence in stream water and major cations and anions seemed to control NTM absence. However, additional bacterial stream data is needed to strengthen this finding. Additionally, an Oahu source water assessment and protection groundwater model was refined by including stream discharge data, including losses to the aquifer. NTM inhabits many environmental niches, although little is understood regarding the transport of NTM from the environment to indoor plumbing. However, transport from surface water to water-supply aquifers is likely important. This study analyzes groundwater flow from stream losses as a mechanism of NTM transport to water supplies. An updated MODFLOW groundwater model was developed for the north-east Oahu, Waimea River drainage. Results show hundreds of meters of lateral and tens of meters of vertical transport of NTM in 1-3 months. Additionally, geochemical modeling with Geochemist’s Workbench showed Fe oxy/hydroxides oversaturated in 100% of streams. Fe oxy/hydroxide affixed to NTM would potentially satisfy NTM’s preference for attachment and allow for colloidal transport through the aquifer.
12

Flow Dynamics and Management Options in Stressed Carbonate Aquifer System, The Western Aquifer Basin, Palestine / Grundwasserdynamik und Optionen zur Bewirtschaftung des beanspruchten Karbonat-Aquifer-Systems des Western-Aquifer-Basins, Palästina.

Abusaada, Muath Jamil 27 June 2011 (has links)
No description available.
13

Modellering av grundvattendynamiken och transport av löst organisk kol i Uppsalaåsen

Jarmander, Anna January 2021 (has links)
Uppsala esker is the main source of drinking water in Uppsala city and it provides the city with clean water all year around. The demand of drinking water is growing, and the municipality plans on increasing the artificial infiltration in order to meet future demands. During the last years, the concentration of organic carbon in Uppsala’s drinking water has increased which has raised concerns regarding the future drinking water quality. A decrease in the residence time as a result of increased infiltration may partly cause these increasing concentration levels. The aim of this master’s thesis was therefore to recreate the groundwater dynamics in the Uppsala esker with a model and hence, an improved understanding of the transport of organic carbon in order to predict the consequences of an increased artificial infiltration. The thesis also aimed to investigate the potential risk of the concentration of organic carbon in the drinking water to exceed the reference value from the Swedish food agency. The computer code used in this project was MODFLOW together with GMS which together helped creating a simplified, three-dimensional groundwater model of a delimited part of the Uppsala esker that covers Tunåsen infiltration facility down to the well area in Galgbacken.  A conceptual model was constructed in GMS for the model domain and was then converted into a numerical MODFLOW steady-state model. The model was then calibrated after both measured groundwater levels with a 40 cm deviation and after the already known residence time for the distance Tunåsen – Galgbacken. Four scenarios with varying infiltration and outtake were then simulated. Each scenario was then simulated with three different incoming concentrations of organic carbon in the infiltration: 7, 15 and 50 mg/L.  Results show that the groundwater dynamics can be reconstructed with a simplified model however, it is likely that the simplifications resulted in a less precise model. The transport simulations indicated that the residence time decreases with increased artificial infiltration and outtake. Transport simulations furthermore showed that residence time is the most crucial factor effecting the transport distance of the organic carbon. Lastly, the result indicated that there is a risk that the reference value for organic carbon will be exceeded for incoming concentrations of 15 and 30 mg/L respectively, mainly in scenario C where the maximum infiltration and outtake capacities were simulated. In addition, it was concluded that there may be a risk that the reference value will even be exceeded in the other scenarios with an increased simulation time. / I Uppsala är Uppsalaåsen central för vattenförsörjningen då den förser staden med rent dricksvatten året om. De senaste åren har det observerats en oroväckande ökande trend av halten löst organisk kol (DOC) i grundvattnet. Med ett ökande dricksvattenbehov finns det även planer på att öka den konstgjorda grundvattenbildningen vilket riskerat att öka halterna ännu mer. Examensarbetets syfte var att återskapa grundvattendynamiken med en modell och öka förståelsen för transport av organisk kol i Uppsalaåsen och därefter prediktera möjliga konsekvenser av ökad infiltration. Projektet ämnade dessutom att undersöka om det i framtiden finns en risk att gränsvärdet för organiskt kol i Uppsalas dricksvatten överskrids. I projektet användes modellkoden MODFLOW tillsammans med GMS för att skapa en förenklad, tredimensionell grundvattenmodell. Modelldomänet var en avgränsad del av Uppsalaåsen från Tunåsens infiltrationsanläggning till Galgbackens uttagsområde.  Inledningsvis upprättades en konceptuell modell i GMS som sedan konverterades till en numerisk steady-state modell. Modellen kalibrerades efter uppmätta grundvattennivåer och efter tidigare känd transporttid för sträckan Tunåsen – Galbacken. Därefter utfördes simuleringar för fyra scenarion, 0, A, B och C, med varierande infiltration och uttag. För varje scenario utfördes sedan simuleringar med tre olika koncentrationer av halten löst organiskt material i infiltrationsvattnet; 7, 15 och 30 mg/L. I modellen togs det ej hänsyn till någon nedbrytning av DOC, tillskillnad från den nedbrytning på 50 % som har observerats i åsen.  Resultatet visade att det är möjligt att återskapa den grundvattendynamik som observerats inom modelldomänet med en förenklad modell. För de olika scenariona visade resultaten att transporttiden minskar med ökad infiltration och ett ökat uttag. I förhållande till scenario 0 visade resultaten på en procentuell minskning av transporttiden på 24, 28 och 60 % för respektive scenario A, B och C. Den kortaste transporttiden erhölls således i scenario C på 183 dagar, jämfört med 293 dagar i scenario 0. Resultaten som erhölls visade även att transporttiden är den dominerande faktorn som påverkar det organiska materialets transportsträcka. Slutligen visade resultatet att det finns en risk att halten av organiskt material överstiger Livsmedelverkets gränsvärde för dricksvatten om koncentrationen av DOC i infiltrationsvattnet är hög i kombination med en kort transporttid.

Page generated in 0.1468 seconds