1 |
Nanostructured Group-III Nitrides for Photoelectrocatalytic Applications and Renewable Energy HarvestingZhang, Huafan 04 1900 (has links)
Group-III-nitrides have been intensively investigated for optoelectronics and power electronics and are uniquely suitable for energy-related applications, such as solar hydrogen generation and nanogenerators. Compared to planar group-III-nitrides, their nanostructures offer a high surface-to-volume ratio, increased light absorption cross-section, and improved carrier transportation behavior. This thesis focuses on molecular-beam-epitaxy-grown group-III-nitrides, specifically nanowires and membranes, and applications in renewable energy harvesting and conversion.
A Mo2C-decorated (In,Ga)N nanowire-based photocathode was demonstrated for nitrogen fixation. The conventional Haber-Bosch method demands high reaction pressure and temperature while releasing a considerable amount of greenhouse gas. The proposed photoelectrocatalytic method can utilize solar energy to generate ammonia without carbon emissions. The proposed photocathodes can achieve maximum faradaic efficiency of 12 %, ammonia yield of 8.9 µg/h/cm2, and excellent stability for over 12 hrs.
Moreover, group-III-nitrides were fabricated into a freestanding membrane through a novel method combining electrochemical porosification and controlled spalling. The novel method is reproducible and scalable, which can significantly reduce the consumption of sacrificial substrates compared to existing nitride membrane exfoliation techniques, thus promising a scalable platform.
The as-fabricated GaN membranes were demonstrated for photoelectrocatalytic methylene blue degradation. Through laboratory tests and rooftop field tests, we proved the feasibility of our wafer-scale GaN membranes in achieving a dye degradation efficiency of 92%, a total organic carbon removal rate of 50.2%, and extraordinary stability for ~ 50 hours under solar illumination. The membrane can also degrade ~87% of MB under visible-light illumination.
Furthermore, the (Al,Ga)N membranes were fabricated into flexible transparent piezoelectric devices. The devices can sense compression pressure and bending strain while giving a comparable compression sensitivity to other thin film piezotronics devices of ~ 2.41 mV/kPa and 42.36 pA/kPa, a maximum bending gauge factor of ~ 1271, and an output power density of ~ 5.38 nW/cm2. The sensors can withstand over 35000 cycles of operation and can be utilized for sensing and harvesting mechanical energies from human motions and environmental signals.
This research utilized nanowires and membrane-based group-III-nitrides for different photoelectrocatalytic reactions and piezotronics devices, from material preparation and characterizations, and demonstrated practical devices for clean energy-related applications.
|
2 |
Structural and Optical Characterization of Group III-Nitride Compound semiconductorsSenawiratne, Jayantha 12 June 2006 (has links)
The structural properties of the group III-nitrides including AlN, Ga1-xMnxN, GaN:Cu, and InN were investigated by Raman spectroscopy. Absorption and photoluminescence spectroscopy were utilized to study the optical properties in these materials. The analysis of physical vapor transport grown AlN single crystals showed that oxygen, carbon, silicon, and boron are the major impurities in the bulk AlN. The Raman analysis revealed high crystalline quality and well oriented AlN single crystals. The absorption coefficient of AlN single crystals were assessed in the spectral range from deep UV to the FIR. The absorption and photoluminescence analysis indicate that, in addition to oxygen, carbon, boron, and silicon, contribute to the optical properties of bulk AlN crystals. In situ Cu-doped GaN epilayers with Cu concentrations in the range of 2x10^16 cm-3 - 5x1017 cm-3, grown on sapphire substrate by metal organic chemical vapor deposition, were investigated by Raman and PL spectroscopy. The Raman study revealed high crystalline GaN:Cu layers with minimal damage to the hexagonal lattice structure due to the Cu incorporation. A strong Cu related emission band at 2.4 eV was assigned to Cu induced optical transitions between deep Cu states and shallow residual donor states. Compensation of Cu states by residual donors and poor activation probability of deep Cu states are responsible for semi-insulating electrical conductivity. Ferromagnetic Ga1-xMnxN epilayers, grown by MOCVD with Mn concentration from x = 0 to x = 1.5, were optically investigated by Raman, PL, and transmission spectroscopy. The Raman studies revealed Mn-related Raman peaks at 300 cm-1, 609 cm-1, and 669 cm-1. Mn-related absorption and emission bands in Ga1-xMnxN were observed at 1.5 eV and 3.0 eV, respectively. The structural properties of InN layers, grown by high pressure-CVD with different free carrier concentrations, were analyzed by Raman spectroscopy. The Raman results show that the InN layers have high crystalline quality. The free carriers in layers were calculated by using the Lindhard-Mermin dielectric function taking into account finite wave vectors for various scattering processes including forbidden Frohlich, deformational potential associated with allowed electro-optic, and charge density fluctuation, mechanisms. The free carrier concentrations in the layers are below 1x10^20 cm-3.
|
3 |
Motor unit firing patterns during sustained ischemic submaximal contractionsShah, Kena Pankajkumar 15 February 2011 (has links)
The aim of this study was to determine motor unit firing patterns during ischemic versus non-ischemic sustained submaximal isometric contractions of the tibialis anterior muscle. 10 healthy adults attended two experimental sessions approximately 48 hours apart. Both sessions were identical except that the fatigue task in one was performed with a pressure cuff placed above the knee and inflated to 180 mm Hg. Three 5s maximum voluntary contractions (MVCs) were performed prior to and after the fatigue task. Each participant held a target force of 20% MVC until endurance time (peak-to-peak tremor amplitude exceeded 5% MVC). Single motor unit firing rates (11 non ischemic, 9 ischemic) were recorded with intramuscular fine wire electrodes. Mean interspike intervals over 5s time bins were calculated at every 5% endurance time. The endurance time for the ischemic (3.7 ± 0.58 min) fatigue task was significantly (p<0.001) shorter than the non-ischemic (9.5 ± 0.57 min) task. There was no significant difference in mean motor unit firing rates between the two conditions (p=0.883). Within both tests, there was a significant decline in firing rate (ischemic initial: 12.95 ± 0.71 Hz, minimum: 11.41 ± 0.81 Hz, p=0.023; non-ischemic initial: 13.13 ± 0.87 Hz, minimum: 11.15 ± 0.48 Hz, p=0.012). The time to minimum firing rate was significantly (p<0.001) less in the ischemic (1.29 ± 0.2 min) compared to non-ischemic (3.14 ± 0.23 min) condition. Muscle ischemia significantly reduced endurance time and the time to minimum firing rate. However, there were no differences in average motor unit firing rates between the two conditions across the relative phases of endurance time. / text
|
4 |
III-Oxide Epitaxy, Heterostructure, Material Characterizations, and ApplicationsLi, Kuang-Hui 15 November 2020 (has links)
B-Ga2O3 is one of the emerging semiconductor materials with high breakdown field strength (~ 8 MV/cm) and ultrawide-bandgap (UWBG) 4.9 eV. Therefore, B-Ga2O3 and related compound semiconductors are ideal for power electronics and deep/vacuum ultraviolet-wavelength photodetector applications. High-crystal-quality B-Ga2O3 semiconductor materials epitaxially deposited on the various substrate are prerequisites for realizing any practical application. However, it is still challenging to grow high-crystal-quality V-Ga2O3 layer and to integrate B-Ga2O3 with other semiconductor materials by direct epitaxy. Understanding the epitaxial relationship of the integrated oxide heterostructure and the substrate used helps to shed light on the feasibility of heterojunctions formation for photonic applications, such as the ultraviolet-wavelength photodetectors developed in this thesis.
By optimizing pulsed laser deposition (PLD) conditions, such as laser energy, ambient gas, pressure, etc., a single-crystalline oxide heterostructure were successfully integrated into a photonic platform. This included p-NiO/n-B-Ga2O3/a-Al2O3, B-Ga2O3/y-In2O3/a-Al2O3, and B-Ga2O3/TiN/MgO structures. The epitaxial thin film crystallographic and chemical properties were investigated by different characterization techniques. The high-resolution X-ray diffraction (HRXRD) was applied to study the heterostructures’ epitaxial orientation relationship by out-of-plane XRD w-2θ-scan and asymmetric skew ɸ-scan. The lattice-mismatch at the heterostructure interfaces were examined and the crystal quality of the epitaxial thin films were measured by means of full-width at half-maximum (FWHM) fitting. Scanning-TEM energy-dispersive X-ray spectroscopy (STEM-EDX) was applied to qualitatively study the chemical elements’ spatial distribution. Rutherford backscattering spectroscopy (RBS) was applied to study the epitaxial thin film chemical composition, material stoichiometry, and inter-diffusion. The X-ray photoelectron spectroscopy (XPS) was applied to study the conduction and valence band offsets which is essential to determine the types of heterostructures formed.
Finally, the p-NiO/n-B-Ga2O3/a-Al2O3 B-Ga2O3/y-In2O3/a-Al2O3, and B-Ga2O3/TiN/MgO epitaxial thin-film were fabricated into ultraviolet-wavelength photodetectors. The wavelength-dependent and power-dependent characterizations were applied to measure the cut-off wavelength and the peak responsivity. The time response characterization was applied to measure the photodetectors’ responses to pulse signals, and the rise and decay times were fitted by a double exponential function.
|
5 |
Optimization and characterization of bulk hexagonal boron nitride single crystals grown by the nickel-chromium flux methodHoffman, Timothy B. January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / Hexagonal boron nitride (hBN) is a wide bandgap III-V semiconductor that has seen new interest due to the development of other III-V LED devices and the advent of graphene and other 2-D materials. For device applications, high quality, low defect density materials are needed. Several applications for hBN crystals are being investigated, including as a neutron detector and interference-less infrared-absorbing material. Isotopically enriched crystals were utilized for enhanced propagation of phonon modes. These applications exploit the unique physical, electronic and nanophotonics applications for bulk hBN crystals.
In this study, bulk hBN crystals were grown by the flux method using a molten Ni-Cr solvent at high temperatures (1500°C) and atmospheric pressures. The effects of growth parameters, source materials, and gas environment on the crystals size, morphology and purity were established and controlled, and the reliability of the process was greatly improved. Single-crystal domains exceeding 1mm in width and 200μm in thickness were produced and transferred to handle substrates for analysis. Grain size dependence with respect to dwell temperature, cooling rate and cooling temperature were analyzed and modeled using response surface morphology. Most significantly, crystal grain width was predicted to increase linearly with dwell temperature, with single-crystal domains exceeding 2mm in at 1700°C.
Isotopically enriched ¹⁰B and ¹¹B hBN crystal were produced using a Ni-Cr-B flux method, and their properties investigated. ¹⁰B concentration was evaluated using SIMS and correlated to the shift in the Raman peak of the E[subscript 2g] mode. Crystals with enrichment of 99% ¹⁰B and >99% ¹¹B were achieved, with corresponding Raman shift peaks at 1392.0 cm⁻¹ and 1356.6 cm⁻¹, respectively. Peak FWHM also decreased as isotopic enrichment approached 100%, with widths as low as 3.5 cm⁻¹ achieved, compared to 8.0 cm⁻¹ for natural abundance samples.
Defect selective etching was performed using a molten NaOH-KOH etchant at 425°C-525°C, to quantify the quality of the crystals. Three etch pit shapes were identified and etch pit width was investigated as a function of temperature. Etch pit density and etch pit activation energy was estimated at 5×10⁷ cm⁻² and 60 kJ/mol, respectively. Screw and mixed-type dislocations were identified using diffraction-contrast TEM imaging.
|
6 |
Growth and Characterization of Indium Nitride Layers Grown by High-Pressure Chemical Vapor DepositionAlevli, Mustafa 22 April 2008 (has links)
In this research the growth of InN epilayers by high-pressure chemical vapor deposition (HPCVD) and structural, optical properties of HPCVD grown InN layers has been studied. We demonstrated that the HPCVD approach suppresses the thermal decomposition of InN, and therefore extends the processing parameters towards the higher growth temperatures (up to 1100K for reactor pressures of 15 bar, molar ammonia and TMI ratios around 800, and a carrier gas flow of 12 slm). Structural and surface morphology studies of InN thin layers have been performed by X-ray diffraction, low energy electron diffraction (LEED), auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS) and atomic force microscopy (AFM). Raman spectroscopy, infrared reflection, transmission, photoluminescence spectroscopy studies have been carried out to investigate the structural and optical properties of InN films grown on sapphire and GaN/sapphire templates. InN layers grown on a GaN (0002) epilayer exhibit single-phase InN (0002) X-ray diffraction peaks with a full width at half maximum (FWHM) around 200 arcsec. Auger electron spectroscopy confirmed the cleanliness of the surface, and low energy electron diffraction yielded a 1×1 hexagonal pattern indicating a well-ordered surface. The plasmon excitations are shifted to lower energies in HREEL spectra due to the higher carrier concentration at the surface than in the bulk, suggesting a surface electron accumulation. The surface roughness of samples grown on GaN templates is found to be smoother (roughness of 9 nm) compared to the samples grown on sapphire. We found that the deposition sometimes led to the growth of 3 dimensional hexagonal InN pyramids. Results obtained from Raman and IR reflectance measurements are used to estimate the free carrier concentrations, which were found in the range from mid 10^18 cm-3 to low 10^20 cm-3. The optical absorption edge energy calculated from the transmission spectra is 1.2 eV for samples of lower electron concentration. The Raman analysis revealed a high-quality crystalline layer with a FWHM for the E2(high) peak around 6.9 cm^-1. The results presented in our study suggest that the optimum molar ratio might be below 800, which is due to the efficient cracking of the ammonia precursor at the high reactor pressure and high growth temperature.
|
7 |
Compound semiconductor material manufacture, process improvementWilliams, Howard R. January 2002 (has links)
IQE (Europe) Ltd. manufactures group III/V compound semiconductor material structures, using the Metal Organic Vapour Phase Epitaxy process. The manufactured ranges of semi-conducting materials are relative to discrete or multi-compound use of Gallium Arsenide or Indium Phosphide [III/V]. For MOVPE to compete in large-scale markets, the manufacturing process requires transformation into a reliable, repeatable production process. This need is identified within the process scrap percentage of the process when benchmarked against the more mature Si-CVD process. With this wide-ranging product base and different material systems, flexible processes and systems are essential. The negative impact however, of this demanded flexibility is a complex system, resulting in instability. Minor fluctuations in time, flow, pressure, temperature, or composition in the manufacturing process, will lead to characteristic differences in the produced material [product], when comparing the prescribed run to the actual run. The product profile changes very rapidly, correspondingly the failure profile of the process is equally as dynamic, it is essential therefore that the analysis and projected activities and actions can be identified and consolidated in a timely manner. This project evaluates the process used by IQEE to manufacture III/V compound semi-conducting material structures and uses the business performance to identify the process drivers. One year's [1997] business and process information is used for a single iteration of the improvement cycle. These drivers are then utilised as operators and offer the critical weaknesses in the process related to performance blockages. Some of the techniques utilised in the process evaluation and cause derivation; are original contributions specifically derived for use with a multi-platform complex process with multiple cause and effect operators. A double reporting FMEA contributes a differing rank for like machines running differing products, offering a machine specific failure profile. A novel composite of P-diagram and process flow techniques enables determination of activity influences confirming the key failure mechanism as previously identified by the business risk analysis. This project concludes by nominating the key failure mechanism accounting for 41% of the approximate 50% scrap figure identified again within the business risk analysis. The effects attributed to this failure mechanism are 2- dimensionally analysed utilising an original double operating FMEA, plotting effect to effect for the individual causes, offering a prioritised list of failure categories. The highest priority failure mode is addressed by an equipment design exercise, resulting in an overall 10% sales potential recontribution.
|
8 |
Nonlinear Light Generation from Optical Cavities and AntennaeButler, Sween J. 05 1900 (has links)
Semiconductor based micro- and nano-structures grown in a systematic and controlled way using selective area growth are emerging as a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. This dissertation focuses on the experimental investigation of the nonlinear optical effects in selectively grown gallium nitride micro-pyramids that act as optical cavities, zinc oxide submicron rods and indium gallium nitride multiple quantum well core shell submicron tubes on the apex of GaN micro pyramids that act as optical antennae. Localized spatial excitation of these low dimensional semiconductor structures was optimized for nonlinear optical light (NLO) generation due to second harmonic generation (SHG) and multi-photon luminescence (MPL). The evolution of both processes are mapped along the symmetric axis of the individual structures for multiple fundamental input frequencies of light. Effects such as cavity formation of generated light, electron-hole plasma generation and coherent emission are observed. The efficiency and tunability of the frequency conversion that can be achieved in the individual structures of various geometries are estimated. By controlling the local excitation cross-section within the structures along with modulation of optical excitation intensity, the nonlinear optical process generated in these structures can be manipulated to generate coherent light in the UV-Blue region via SHG process or green emission via MPL process. The results show that these unique structures hold the potential to convert red input pulsed light into blue output pulsed light which is highly directional.
|
9 |
Hydraulic fluids with new, modern base oils – structure and composition, difference to conventional hydraulic fluids; experience in the fieldBock, Wolfgang, Braun, Jürgen, Schürrmann, Tobias 28 April 2016 (has links) (PDF)
The paper describes the comparison and the difference of modern hydraulic fluids compared to conventional hydraulic fluids. A comparison of different base oil groups, solvent neutrals, group I and comparison with hydrotreated/hydroprocessed group II and/or group III base oils is presented. The influence on oxidation stability, elastomer compatibility, carbon distribution and physical properties is outlined.
|
10 |
Optical and Structural Properties of Indium Nitride Epilayers Grown by High-Pressure Chemical Vapor Deposition and Vibrational Studies of ZGP Single CrystalAtalay, Ramazan 07 December 2012 (has links)
The objective of this dissertation is to shed light on the physical properties of InN epilayers grown by High-Pressure Chemical Vapor Deposition (HPCVD) for optical device applications. Physical properties of HPCVD grown InN layers were investigated by X-ray diffraction, Raman scattering, infrared reflection spectroscopies, and atomic force microscopy. The dependencies of physical properties as well as surface morphologies of InN layers grown either directly on sapphire substrates or on GaN/sapphire templates on varied growth conditions were studied. The effect of crucial growth parameters such as growth pressure, V/III molar ratio, precursor pulse separation, substrate material, and mass transport along the flow direction on the optical and structural properties, as well as on the surface morphologies were investigated separately.
At present, growth of high-quality InN material by conventional growth techniques is limited due to low dissociation temperature of InN (~600 ºC) and large difference in the partial pressures of TMI and NH3 precursors. In this research, HPCVD technique, in which ambient nitrogen is injected into reaction zone at super-atmospheric growth pressures, was utilized to suppress surface dissociation of InN at high temperatures.
At high pressures, long-range and short-range orderings indicate that c-lattice constant is shorter and E2(high) mode frequency is higher than those obtained from low-pressure growth techniques, revealing that InN structure compressed either due to a hydrostatic pressure during the growth or thermal contraction during the annealing. Although the influence of varied growth parameters usually exhibit consistent correlation between long-range and short-range crystalline orderings, inconsistent correlation of these indicate inclination of InN anisotropy.
InN layers, grown directly on α-sapphire substrates, exhibit InN (1 0 1) Bragg reflex. This might be due to a high c/a ratio of sapphire-grown InN epilayers compared to that of GaN/sapphire-grown InN epilayers. Optical analysis indicates that free carrier concentration, ne, in the range of 1–50 × 1018 cm–3 exhibits consistent tendency with longitudinal-optic phonon. However, for high ne values, electrostatic forces dominate over inter-atomic forces, and consistent tendency between ne and LO phonon disappears.
Structural results reveal that growth temperature increases ~6.6 ºC/bar and V/III ratio affects indium migration and/or evaporation. The growth temperature and V/III ratio of InN thin films are optimized at ~850 ºC and 2400 molar ratio, respectively. Although high in-plane strain and c/a ratio values are obtained for sapphire-grown epilayers, FWHM values of long-range and short-range orderings and free carrier concentration value are still lower than those of GaN/sapphire-grown epilayers.
Finally, vibrational and optical properties of chalcopyrite ZGP crystal on the (001), (110), and (10) crystalline planes were investigated by Raman scattering and infrared (IR) reflection spectroscopies. Raman scattering exhibits a nonlinear polarizability on the c-plane, and a linear polarizability on the a- and b-planes of ZGP crystal. Also, birefringence of ZGP crystal was calculated from the hydrostatic pressure difference between (110) and (10) crystalline planes for mid-frequency B2(LO) mode.
|
Page generated in 0.1579 seconds