1 |
Nanostructured Group-III Nitrides for Photoelectrocatalytic Applications and Renewable Energy HarvestingZhang, Huafan 04 1900 (has links)
Group-III-nitrides have been intensively investigated for optoelectronics and power electronics and are uniquely suitable for energy-related applications, such as solar hydrogen generation and nanogenerators. Compared to planar group-III-nitrides, their nanostructures offer a high surface-to-volume ratio, increased light absorption cross-section, and improved carrier transportation behavior. This thesis focuses on molecular-beam-epitaxy-grown group-III-nitrides, specifically nanowires and membranes, and applications in renewable energy harvesting and conversion.
A Mo2C-decorated (In,Ga)N nanowire-based photocathode was demonstrated for nitrogen fixation. The conventional Haber-Bosch method demands high reaction pressure and temperature while releasing a considerable amount of greenhouse gas. The proposed photoelectrocatalytic method can utilize solar energy to generate ammonia without carbon emissions. The proposed photocathodes can achieve maximum faradaic efficiency of 12 %, ammonia yield of 8.9 µg/h/cm2, and excellent stability for over 12 hrs.
Moreover, group-III-nitrides were fabricated into a freestanding membrane through a novel method combining electrochemical porosification and controlled spalling. The novel method is reproducible and scalable, which can significantly reduce the consumption of sacrificial substrates compared to existing nitride membrane exfoliation techniques, thus promising a scalable platform.
The as-fabricated GaN membranes were demonstrated for photoelectrocatalytic methylene blue degradation. Through laboratory tests and rooftop field tests, we proved the feasibility of our wafer-scale GaN membranes in achieving a dye degradation efficiency of 92%, a total organic carbon removal rate of 50.2%, and extraordinary stability for ~ 50 hours under solar illumination. The membrane can also degrade ~87% of MB under visible-light illumination.
Furthermore, the (Al,Ga)N membranes were fabricated into flexible transparent piezoelectric devices. The devices can sense compression pressure and bending strain while giving a comparable compression sensitivity to other thin film piezotronics devices of ~ 2.41 mV/kPa and 42.36 pA/kPa, a maximum bending gauge factor of ~ 1271, and an output power density of ~ 5.38 nW/cm2. The sensors can withstand over 35000 cycles of operation and can be utilized for sensing and harvesting mechanical energies from human motions and environmental signals.
This research utilized nanowires and membrane-based group-III-nitrides for different photoelectrocatalytic reactions and piezotronics devices, from material preparation and characterizations, and demonstrated practical devices for clean energy-related applications.
|
2 |
Structural and Optical Characterization of Group III-Nitride Compound semiconductorsSenawiratne, Jayantha 12 June 2006 (has links)
The structural properties of the group III-nitrides including AlN, Ga1-xMnxN, GaN:Cu, and InN were investigated by Raman spectroscopy. Absorption and photoluminescence spectroscopy were utilized to study the optical properties in these materials. The analysis of physical vapor transport grown AlN single crystals showed that oxygen, carbon, silicon, and boron are the major impurities in the bulk AlN. The Raman analysis revealed high crystalline quality and well oriented AlN single crystals. The absorption coefficient of AlN single crystals were assessed in the spectral range from deep UV to the FIR. The absorption and photoluminescence analysis indicate that, in addition to oxygen, carbon, boron, and silicon, contribute to the optical properties of bulk AlN crystals. In situ Cu-doped GaN epilayers with Cu concentrations in the range of 2x10^16 cm-3 - 5x1017 cm-3, grown on sapphire substrate by metal organic chemical vapor deposition, were investigated by Raman and PL spectroscopy. The Raman study revealed high crystalline GaN:Cu layers with minimal damage to the hexagonal lattice structure due to the Cu incorporation. A strong Cu related emission band at 2.4 eV was assigned to Cu induced optical transitions between deep Cu states and shallow residual donor states. Compensation of Cu states by residual donors and poor activation probability of deep Cu states are responsible for semi-insulating electrical conductivity. Ferromagnetic Ga1-xMnxN epilayers, grown by MOCVD with Mn concentration from x = 0 to x = 1.5, were optically investigated by Raman, PL, and transmission spectroscopy. The Raman studies revealed Mn-related Raman peaks at 300 cm-1, 609 cm-1, and 669 cm-1. Mn-related absorption and emission bands in Ga1-xMnxN were observed at 1.5 eV and 3.0 eV, respectively. The structural properties of InN layers, grown by high pressure-CVD with different free carrier concentrations, were analyzed by Raman spectroscopy. The Raman results show that the InN layers have high crystalline quality. The free carriers in layers were calculated by using the Lindhard-Mermin dielectric function taking into account finite wave vectors for various scattering processes including forbidden Frohlich, deformational potential associated with allowed electro-optic, and charge density fluctuation, mechanisms. The free carrier concentrations in the layers are below 1x10^20 cm-3.
|
3 |
Motor unit firing patterns during sustained ischemic submaximal contractionsShah, Kena Pankajkumar 15 February 2011 (has links)
The aim of this study was to determine motor unit firing patterns during ischemic versus non-ischemic sustained submaximal isometric contractions of the tibialis anterior muscle. 10 healthy adults attended two experimental sessions approximately 48 hours apart. Both sessions were identical except that the fatigue task in one was performed with a pressure cuff placed above the knee and inflated to 180 mm Hg. Three 5s maximum voluntary contractions (MVCs) were performed prior to and after the fatigue task. Each participant held a target force of 20% MVC until endurance time (peak-to-peak tremor amplitude exceeded 5% MVC). Single motor unit firing rates (11 non ischemic, 9 ischemic) were recorded with intramuscular fine wire electrodes. Mean interspike intervals over 5s time bins were calculated at every 5% endurance time. The endurance time for the ischemic (3.7 ± 0.58 min) fatigue task was significantly (p<0.001) shorter than the non-ischemic (9.5 ± 0.57 min) task. There was no significant difference in mean motor unit firing rates between the two conditions (p=0.883). Within both tests, there was a significant decline in firing rate (ischemic initial: 12.95 ± 0.71 Hz, minimum: 11.41 ± 0.81 Hz, p=0.023; non-ischemic initial: 13.13 ± 0.87 Hz, minimum: 11.15 ± 0.48 Hz, p=0.012). The time to minimum firing rate was significantly (p<0.001) less in the ischemic (1.29 ± 0.2 min) compared to non-ischemic (3.14 ± 0.23 min) condition. Muscle ischemia significantly reduced endurance time and the time to minimum firing rate. However, there were no differences in average motor unit firing rates between the two conditions across the relative phases of endurance time. / text
|
4 |
III-Oxide Epitaxy, Heterostructure, Material Characterizations, and ApplicationsLi, Kuang-Hui 15 November 2020 (has links)
B-Ga2O3 is one of the emerging semiconductor materials with high breakdown field strength (~ 8 MV/cm) and ultrawide-bandgap (UWBG) 4.9 eV. Therefore, B-Ga2O3 and related compound semiconductors are ideal for power electronics and deep/vacuum ultraviolet-wavelength photodetector applications. High-crystal-quality B-Ga2O3 semiconductor materials epitaxially deposited on the various substrate are prerequisites for realizing any practical application. However, it is still challenging to grow high-crystal-quality V-Ga2O3 layer and to integrate B-Ga2O3 with other semiconductor materials by direct epitaxy. Understanding the epitaxial relationship of the integrated oxide heterostructure and the substrate used helps to shed light on the feasibility of heterojunctions formation for photonic applications, such as the ultraviolet-wavelength photodetectors developed in this thesis.
By optimizing pulsed laser deposition (PLD) conditions, such as laser energy, ambient gas, pressure, etc., a single-crystalline oxide heterostructure were successfully integrated into a photonic platform. This included p-NiO/n-B-Ga2O3/a-Al2O3, B-Ga2O3/y-In2O3/a-Al2O3, and B-Ga2O3/TiN/MgO structures. The epitaxial thin film crystallographic and chemical properties were investigated by different characterization techniques. The high-resolution X-ray diffraction (HRXRD) was applied to study the heterostructures’ epitaxial orientation relationship by out-of-plane XRD w-2θ-scan and asymmetric skew ɸ-scan. The lattice-mismatch at the heterostructure interfaces were examined and the crystal quality of the epitaxial thin films were measured by means of full-width at half-maximum (FWHM) fitting. Scanning-TEM energy-dispersive X-ray spectroscopy (STEM-EDX) was applied to qualitatively study the chemical elements’ spatial distribution. Rutherford backscattering spectroscopy (RBS) was applied to study the epitaxial thin film chemical composition, material stoichiometry, and inter-diffusion. The X-ray photoelectron spectroscopy (XPS) was applied to study the conduction and valence band offsets which is essential to determine the types of heterostructures formed.
Finally, the p-NiO/n-B-Ga2O3/a-Al2O3 B-Ga2O3/y-In2O3/a-Al2O3, and B-Ga2O3/TiN/MgO epitaxial thin-film were fabricated into ultraviolet-wavelength photodetectors. The wavelength-dependent and power-dependent characterizations were applied to measure the cut-off wavelength and the peak responsivity. The time response characterization was applied to measure the photodetectors’ responses to pulse signals, and the rise and decay times were fitted by a double exponential function.
|
5 |
Optimization and characterization of bulk hexagonal boron nitride single crystals grown by the nickel-chromium flux methodHoffman, Timothy B. January 1900 (has links)
Doctor of Philosophy / Department of Chemical Engineering / James H. Edgar / Hexagonal boron nitride (hBN) is a wide bandgap III-V semiconductor that has seen new interest due to the development of other III-V LED devices and the advent of graphene and other 2-D materials. For device applications, high quality, low defect density materials are needed. Several applications for hBN crystals are being investigated, including as a neutron detector and interference-less infrared-absorbing material. Isotopically enriched crystals were utilized for enhanced propagation of phonon modes. These applications exploit the unique physical, electronic and nanophotonics applications for bulk hBN crystals.
In this study, bulk hBN crystals were grown by the flux method using a molten Ni-Cr solvent at high temperatures (1500°C) and atmospheric pressures. The effects of growth parameters, source materials, and gas environment on the crystals size, morphology and purity were established and controlled, and the reliability of the process was greatly improved. Single-crystal domains exceeding 1mm in width and 200μm in thickness were produced and transferred to handle substrates for analysis. Grain size dependence with respect to dwell temperature, cooling rate and cooling temperature were analyzed and modeled using response surface morphology. Most significantly, crystal grain width was predicted to increase linearly with dwell temperature, with single-crystal domains exceeding 2mm in at 1700°C.
Isotopically enriched ¹⁰B and ¹¹B hBN crystal were produced using a Ni-Cr-B flux method, and their properties investigated. ¹⁰B concentration was evaluated using SIMS and correlated to the shift in the Raman peak of the E[subscript 2g] mode. Crystals with enrichment of 99% ¹⁰B and >99% ¹¹B were achieved, with corresponding Raman shift peaks at 1392.0 cm⁻¹ and 1356.6 cm⁻¹, respectively. Peak FWHM also decreased as isotopic enrichment approached 100%, with widths as low as 3.5 cm⁻¹ achieved, compared to 8.0 cm⁻¹ for natural abundance samples.
Defect selective etching was performed using a molten NaOH-KOH etchant at 425°C-525°C, to quantify the quality of the crystals. Three etch pit shapes were identified and etch pit width was investigated as a function of temperature. Etch pit density and etch pit activation energy was estimated at 5×10⁷ cm⁻² and 60 kJ/mol, respectively. Screw and mixed-type dislocations were identified using diffraction-contrast TEM imaging.
|
6 |
Growth and Characterization of Indium Nitride Layers Grown by High-Pressure Chemical Vapor DepositionAlevli, Mustafa 22 April 2008 (has links)
In this research the growth of InN epilayers by high-pressure chemical vapor deposition (HPCVD) and structural, optical properties of HPCVD grown InN layers has been studied. We demonstrated that the HPCVD approach suppresses the thermal decomposition of InN, and therefore extends the processing parameters towards the higher growth temperatures (up to 1100K for reactor pressures of 15 bar, molar ammonia and TMI ratios around 800, and a carrier gas flow of 12 slm). Structural and surface morphology studies of InN thin layers have been performed by X-ray diffraction, low energy electron diffraction (LEED), auger electron spectroscopy (AES), high-resolution electron energy loss spectroscopy (HREELS) and atomic force microscopy (AFM). Raman spectroscopy, infrared reflection, transmission, photoluminescence spectroscopy studies have been carried out to investigate the structural and optical properties of InN films grown on sapphire and GaN/sapphire templates. InN layers grown on a GaN (0002) epilayer exhibit single-phase InN (0002) X-ray diffraction peaks with a full width at half maximum (FWHM) around 200 arcsec. Auger electron spectroscopy confirmed the cleanliness of the surface, and low energy electron diffraction yielded a 1×1 hexagonal pattern indicating a well-ordered surface. The plasmon excitations are shifted to lower energies in HREEL spectra due to the higher carrier concentration at the surface than in the bulk, suggesting a surface electron accumulation. The surface roughness of samples grown on GaN templates is found to be smoother (roughness of 9 nm) compared to the samples grown on sapphire. We found that the deposition sometimes led to the growth of 3 dimensional hexagonal InN pyramids. Results obtained from Raman and IR reflectance measurements are used to estimate the free carrier concentrations, which were found in the range from mid 10^18 cm-3 to low 10^20 cm-3. The optical absorption edge energy calculated from the transmission spectra is 1.2 eV for samples of lower electron concentration. The Raman analysis revealed a high-quality crystalline layer with a FWHM for the E2(high) peak around 6.9 cm^-1. The results presented in our study suggest that the optimum molar ratio might be below 800, which is due to the efficient cracking of the ammonia precursor at the high reactor pressure and high growth temperature.
|
7 |
Compound semiconductor material manufacture, process improvementWilliams, Howard R. January 2002 (has links)
IQE (Europe) Ltd. manufactures group III/V compound semiconductor material structures, using the Metal Organic Vapour Phase Epitaxy process. The manufactured ranges of semi-conducting materials are relative to discrete or multi-compound use of Gallium Arsenide or Indium Phosphide [III/V]. For MOVPE to compete in large-scale markets, the manufacturing process requires transformation into a reliable, repeatable production process. This need is identified within the process scrap percentage of the process when benchmarked against the more mature Si-CVD process. With this wide-ranging product base and different material systems, flexible processes and systems are essential. The negative impact however, of this demanded flexibility is a complex system, resulting in instability. Minor fluctuations in time, flow, pressure, temperature, or composition in the manufacturing process, will lead to characteristic differences in the produced material [product], when comparing the prescribed run to the actual run. The product profile changes very rapidly, correspondingly the failure profile of the process is equally as dynamic, it is essential therefore that the analysis and projected activities and actions can be identified and consolidated in a timely manner. This project evaluates the process used by IQEE to manufacture III/V compound semi-conducting material structures and uses the business performance to identify the process drivers. One year's [1997] business and process information is used for a single iteration of the improvement cycle. These drivers are then utilised as operators and offer the critical weaknesses in the process related to performance blockages. Some of the techniques utilised in the process evaluation and cause derivation; are original contributions specifically derived for use with a multi-platform complex process with multiple cause and effect operators. A double reporting FMEA contributes a differing rank for like machines running differing products, offering a machine specific failure profile. A novel composite of P-diagram and process flow techniques enables determination of activity influences confirming the key failure mechanism as previously identified by the business risk analysis. This project concludes by nominating the key failure mechanism accounting for 41% of the approximate 50% scrap figure identified again within the business risk analysis. The effects attributed to this failure mechanism are 2- dimensionally analysed utilising an original double operating FMEA, plotting effect to effect for the individual causes, offering a prioritised list of failure categories. The highest priority failure mode is addressed by an equipment design exercise, resulting in an overall 10% sales potential recontribution.
|
8 |
Nonlinear Light Generation from Optical Cavities and AntennaeButler, Sween J. 05 1900 (has links)
Semiconductor based micro- and nano-structures grown in a systematic and controlled way using selective area growth are emerging as a promising route toward devices for integrated optical circuitry in optoelectronics and photonics field. This dissertation focuses on the experimental investigation of the nonlinear optical effects in selectively grown gallium nitride micro-pyramids that act as optical cavities, zinc oxide submicron rods and indium gallium nitride multiple quantum well core shell submicron tubes on the apex of GaN micro pyramids that act as optical antennae. Localized spatial excitation of these low dimensional semiconductor structures was optimized for nonlinear optical light (NLO) generation due to second harmonic generation (SHG) and multi-photon luminescence (MPL). The evolution of both processes are mapped along the symmetric axis of the individual structures for multiple fundamental input frequencies of light. Effects such as cavity formation of generated light, electron-hole plasma generation and coherent emission are observed. The efficiency and tunability of the frequency conversion that can be achieved in the individual structures of various geometries are estimated. By controlling the local excitation cross-section within the structures along with modulation of optical excitation intensity, the nonlinear optical process generated in these structures can be manipulated to generate coherent light in the UV-Blue region via SHG process or green emission via MPL process. The results show that these unique structures hold the potential to convert red input pulsed light into blue output pulsed light which is highly directional.
|
9 |
Hydraulic fluids with new, modern base oils – structure and composition, difference to conventional hydraulic fluids; experience in the fieldBock, Wolfgang, Braun, Jürgen, Schürrmann, Tobias 28 April 2016 (has links) (PDF)
The paper describes the comparison and the difference of modern hydraulic fluids compared to conventional hydraulic fluids. A comparison of different base oil groups, solvent neutrals, group I and comparison with hydrotreated/hydroprocessed group II and/or group III base oils is presented. The influence on oxidation stability, elastomer compatibility, carbon distribution and physical properties is outlined.
|
10 |
(Al,Ga,In)N heterostructures grown along polar and non-plar directions by plasma-assisted molecular beam epitaxyWaltereit, Patrick 11 July 2001 (has links)
Thema dieser Arbeit ist die Synthese von hexagonalen (Al,Ga,In)N-Heterostrukturen mittels plasma-unterstützter Molekularstrahlepitaxie. Die Proben werden entlang der polaren [0001]-Richtung und der unpolaren [1100]-Richtung auf SiC(0001)- bzw. g-LiAlO2(100)-Substraten gewachsen. Der Einfluß der Wachstumsbedingungen auf die strukturellen, morphologischen, optischen, vibronischen und elektrischen Eigenschaften der Proben wird untersucht. Im Vergleich zu den übrigen III-V-Halbleitern zeichnen sich die hexagonalen Nitride besonders durch die Größe ihrer Fehlpassungen und elektrischen Polarisationsfelder aus. Eine Einführung in diese beiden wichtigen Eigenschaften wird gegeben, insbesondere für [0001]- und [1100]-orientierte Schichten. Um Verspannungen und elektrische Polarisationsfelder in korrekter Art und Weise zu berücksichtigen, wird ein effizientes Modell zur dynamischen Simulation von Röntgenbeugungsprofilen formuliert und auf hexagonale sowie kubische Kristalle angewandt. Die Synthese von GaN-Pufferschichten auf SiC(0001)- und g-LiAlO2(100)-Substraten wird diskutiert. Das GaN-Wachstum auf SiC(0001) erfolgt entlang der üblichen polaren [0001]-Richtung. Ein neuartiger Freiheitsgrad der GaN-Epitaxie wird durch das Wachstum von GaN entlang der unpolaren [1100]-Richtung auf g-LiAlO2(100) erreicht. Eine in-situ Strategie zur reproduzierbaren Abscheidung von GaN-Pufferschichten wird erarbeitet, die auf der Kontrolle der Wachstumsparameter durch Beugung von hochenergetischen Elektronen beruht. Die Schichten sind einphasig innerhalb der Nachweisgrenze von Röntgenbeugung und zeichnen sich durch glatte Oberflächen aus, die für das weitere Wachstum von Heterostrukturen gut geeignet sind. Es wird gezeigt, daß die strukturellen Eigenschaften der Pufferschichten sehr stark von der Substratpräparation abhängen. Ausgezeichnete strukturelle Eigenschaften werden auf sauberen und glatten SiC(0001)-Substraten erzielt, wogegen GaN(1100)-Filme unter der schlechteren Oberflächenqualität der g-LiAlO2(100)-Substrate leiden. GaN/(Al,Ga)N-Multiquantenwells (MQWs) mit identischer Schichtfolge werden auf den beiden Sorten von GaN-Pufferschichten gewachsen. Wegen der verschiedenen Orientierungen der polaren c-Achse relativ zur Wachstumsrichtung treten in der Rekombination von Ladungsträgern erhebliche Unterschiede auf. Es wird gezeigt, daß in [1100]-orientieren Wells Flachbandbedingungen herrschen. Im Gegensatz dazu existieren starke elektrostatische Felder in [0001]-orientierten Wells. Daher ist die Übergangsenergie von [0001]-orientierten Wells rotverschoben relativ zur Übergangsenergie der [1100]-orientierten Wells. Weiterhin besitzen die [0001]-orientierten Wells sehr viel längere Zerfallszeiten in der Photolumineszenz (PL). Beide Ergebnisse sind in quantitativer Übereinstimmung mit theoretischen Vorhersagen, die auf selbstkonsistenten Berechnungen von Bandprofilen und Wellenfunktionen mittels der Poisson- und Schrödingergleichungen in der Effektivmassen-Näherung basieren. Die Emission der [0001]-orientierten Wells ist isotrop, während die Emission der [1100]-orientierten Wells stark (>90%) senkrecht zur [0001]-Richtung polarisiert ist. Diese Ergebnisse sind in sehr guter Übereinstimmung mit den unterschiedlichen Valenzbandstrukturen der Wells. Das Wachstum von (In,Ga)N/GaN-MQWs wird untersucht. Massive Oberflächensegregation von In wird mit Beugung hochenergetischer Elektronen, Sekundärionenmassenspektrometrie, Röntgenbeugung und PL nachgewiesen. Rechteckige In-Profile belegen einen Segregationsmechanismus nullter Ordnung und nicht (wie bei anderen Materialsystemen beobachtet) einen erster Ordnung. Diese In-Segregation während des metallstabilen Wachstums resultiert in MQWs mit geringem Überlapp der Elektronen- und Lochwellenfunktionen, weil die Wells sehr viel dicker als beabsichtigt sind. Eine Verminderung der In-Segregation ist möglich durch N-stabiles Wachstum, führt jedoch zu rauhen Grenzflächen. Eine Strategie zum Wachstum von MQWs mit glatten Grenzflächen und hohen Quanteneffizienzen wird vorgestellt. Die strahlende Rekombination von (In,Ga)N/GaN-MQWs wird diskutiert. Es wird gezeigt, daß sowohl Zusammensetzungsfluktuationen als auch elektrostatische Felder für ein eingehendes Verständnis der Rekombination berücksichtigt werden müssen. Die Temperaturabhängigkeit der strahlenden Lebensdauer wird gemessen, um die Dimensionalität des Systems aufzuklären. Für ein quantitatives Verständnis wird ein Ratengleichungsmodell zur Analyse der Daten benutzt. Bei niedrigen Temperaturen wird die Rekombination von lokalisierten Zustände geprägt, wohingegen ausgedehnte Zustände bei höheren Tenmperaturen dominieren. Diese Analyse zeigt, daß die Lokalisierungstiefe in diesen Strukturen unterhalb von 25 meV liegt. / In this work, we investigate the synthesis of wurtzite (Al,Ga,In)N heterostructures by plasma-assisted molecular beam epitaxy. The layers are grown along the polar [0001] and the non-polar [1100] direction on SiC(0001) and g-LiAlO2(100) substrates, respectively. We examine the impact of deposition conditions on the structural, morphological, optical, vibrational and electrical properties of the films. An introduction is given to the most important properties of wurtzite nitride semiconductors: strain and electrical polarization fields of a magnitude not found in other III-V semiconductors. Particular emphasis is paid on [0001] and [1100] oriented layers. In order to correctly account for these phenomena in the samples under investigation, an efficient model for the dynamical simulation of x-ray diffraction (XRD) profiles is formulated and presented for wurtzite and zincblende crystals. The deposition of GaN buffer layers on two substrates, SiC(0001) and g-LiAlO2(100), is discussed. The conventional polar [0001] direction is obtained on SiC(0001) substrates. A new degree of freedom for GaN epitaxy is demonstrated by the growth of GaN along a non-polar direction, namely, [1100] on g-LiAlO2(100). An in-situ strategy for the reproducible growth of these GaN buffers is developed based on reflection high-energy electron diffraction (RHEED). The films are single-phase within the detection limit of high-resolution XRD and exhibit smooth surface morphologies well suited for subsequent growth of heterostructures. The structural properties of these samples are shown to be very sensitive to substrate preparation before growth. Smooth and clean SiC(0001) substrates result in excellent structural properties of GaN(0001) layers whereas GaN(1100) films still suffer from the inferior morphological and chemical quality of g-LiAlO2(100) substrates. Identically designed GaN/(Al,Ga)N multiple quantum wells (MQWs) are deposited on these two types of buffer layers. Significant differences in recombination due to the different orientations of the polar c-axis with respect to the growth direction are detected in photoluminescence (PL). It is demonstrated that flat-band conditions are established in [1100] oriented wells whereas strong electrostatic fields have to be taken into account for the [0001] oriented wells. Consequently, the transition energy of the [0001] oriented wells is red-shifted with respect to the [1100] oriented wells. Furthermore, [0001] oriented wells exhibit significantly prolonged PL decay times. These results are in quantitative agreement with theoretical predictions based on self-consistent effective-mass Schrödinger-Poisson calculations of the band profiles and wave functions. Finally, while the emission from [0001] oriented wells is isotropic, the emission from [1100] oriented wells is strongly polarized (>90%) normal to the [0001] axis in sound agreement with the different valence band structures of the wells. The growth of (In,Ga)N/GaN MQWs is studied. Massive In surface segregation (evidenced by RHEED, XRD, secondary-ion mass-spectrometry and PL) is shown to result in top-hat profiles and is therefore a zeroth order process instead of a first order process as observed for other materials systems. In segregation during metal-stable growth results in quantum wells with poor electron-hole wavefunction overlap since the actual well width is much larger than the intended one. Reduction of In segregation by N-stable conditions is possible but inevitably delivers rough interfaces. A strategy for obtaining (In,Ga)N/GaN MQWs with smooth interfaces and high quantum efficiency is devised. The radiative recombination from (In,Ga)N/GaN MQWs is examined. It is demonstrated that both compositional fluctuations and electrostatic fields have to be taken into account for a thorough understanding of the emission from these structures. The temperature dependence of the radiative decay time is measured to probe the dimensionality of the system. For a quantitative understanding, a rate-equation model is utilized for analyzing the data. For low temperatures, recombination is governed by localized states whereas for high temperatures extended states dominate. This analysis shows that the localization depth in these structures is below 25 meV.
|
Page generated in 0.028 seconds