Spelling suggestions: "subject:"groupe dde cremona"" "subject:"groupe dde stemona""
1 |
Sur le groupe de Cremona : aspects algébriques et<br />dynamiquesDéserti, Julie 09 November 2006 (has links) (PDF)
Dans cette thèse nous commençons par décrire le groupe des automorphismes extérieurs du groupe des automorphismes polynomiaux du plan affine : il s'identifie au groupe des automorphismes du corps des complexes. Nous étendons ce résultat au groupe de Cremona ; les techniques utilisées sont différentes, le premier groupe ayant une structure de produit amalgamé ce qui n'est pas connu pour le second. Ensuite nous nous intéressons aux représentations de certains réseaux dans le groupe de Cremona ; nous obtenons un théorème de rigidité pour SL(3,Z) et des obstructions à ce que certains réseaux se plongent dans le groupe de Cremona. Enfin nous exhibons une famille de transformations birationnelles curieuses : bien qu'elles présentent toutes les caractéristiques des transformations réputées sans dynamique les expériences numériques révèlent des orbites chaotiques situées dans le complément de deux zones où les adhérences des orbites sont des tores ou des cercles.
|
2 |
Groupe de Cremona et espaces hyperboliques / Cremona group and hyperbolic spacesLonjou, Anne 14 September 2017 (has links)
Le groupe de Cremona de rang 2 est le groupe des transformations birationnelles du plan projectif. Le but de cette thèse est d'étudier et de construire des espaces hyperboliques sur lesquels le groupe de Cremona agit et qui permettent de mettre en œuvre des méthodes provenant de la théorie géométrique des groupes. Il est connu depuis une dizaine d'année que le groupe de Cremona agit sur un espace hyperbolique H analogue au plan hyperbolique classique mais de dimension infinie. Dans un premier temps, nous montrons que le groupe de Cremona défini sur un corps quelconque n'est pas simple en le faisant agir sur cet espace hyperbolique. Ceci prolonge un résultat déjà connu dans le cas d'un corps de base algébriquement clos. Nous nous intéressons ensuite à un graphe construit par D. Wright sur lequel agit le groupe de Cremona. Nous montrons qu'il ne possède pas la propriété que nous souhaitions, à savoir qu'il n'est pas hyperbolique au sens de Gromov. Nous construisons également un domaine fondamental pour l'action du groupe de Cremona sur H via la méthode des cellules de Voronoï. Nous caractérisons les applications du groupe de Cremona qui correspondent à un domaine adjacent au domaine fondamental. Cela nous permet de prouver que le graphe de Wright est quasi-isométrique au graphe dual à ce pavage. Nous obtenons ainsi une manière de retrouver le graphe de Wright dans H. Nous montrons enfin qu'en modifiant ce graphe dual, nous obtenons un graphe hyperbolique au sens de Gromov. Dans une dernière partie, nous nous intéressons à une autre propriété naturelle qui est la propriété CAT(0). Nous construisons un complexe cubique CAT(0) de dimension infinie muni d'une action naturelle du groupe de Cremona. / The Cremona group of rank 2 is the group of birational transformations of the projective plane. The aim of this thesis is to study and build some hyperbolic spaces with a natural action of the Cremona group. We want these spaces to have good geometric properties in order to use methods coming from geometric group theory. It is known that the Cremona group acts on a hyperbolic space H which is similiar to the classical hyperbolic plane but in infinite dimension. First, using this action, we show that the Cremona group is not simple over any field. This extends previous results over an algrebraic closed field. Then we study the Wrigth's graph. We show that it doesn't have the property we are looking for, in the sense that it is not Gromov hyperbolic. We build a fundamental domain for the action of the Cremona group on H 8 via Voronoï's cells. We characterize birational tranformations that correspond to adjacent domains of the fundamental domain. This allows us to prove that the Wright's graph is quasi-isometric to the dual graph of this tessellation. It's give us a way of realizing the Wright's graph inside H. Finally, we show that by modifying the dual graph we obtain a Gromov hyperbolic graph. In the last part, we are interested in another classical property which is the CAT(0) property. We build an infinite dimensional CAT(0) cubical complex which comes with a natural action of the Cremona group.
|
3 |
Sur le groupe de Cremona et ses sous-groupesUsnich, Alexandr 05 November 2008 (has links) (PDF)
Ce travail peut être divisé en trois partie: 1. Théorie des groupes. Il s'agit ici d'une étude de la structure du groupe T de Thompson. On explique la notion de la mutation linéaire par morceaux et on obtient la nouvelle présentation de ce groupe en termes des génerateurs et relations. 2. Géometrie birationnelle. On étudie en détail le groupe de Cremona qui est un groupe des automorphismes birationnels du plan projectif. En particulier on s'interesse à son sous-groupe Symp des elements qui préserve le crochet de Poisson dit logarithmique, aussi bien qu'à un sous-groupe H engendré par SL(2,Z) et par les mutations. On construit des limites projectives des surfaces sur lesquelles ces groupes agissent régulièrement, et on en déduit les répresentations linéaires de ces groupes dans les limites inductives des groupes de Picard des surfaces. 3. Algèbre homologique. A partir d'une variété algébrique on construit une catégorie triangulée qui ne dépend que de sa classe birationnelle. En utilisant la technique de quotient de dg-catégories, on calcule explicitement cette catégorie pour les surfaces rationnelles. Comme consequence on obtient l'action du groupe de Cremona sur une algébre non-commutative par les automorphismes extérieures. On donne les applications de ces résultats aux formules des mutations des variables non-commutatives.
|
Page generated in 0.0663 seconds