• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 14
  • 6
  • Tagged with
  • 70
  • 32
  • 20
  • 19
  • 19
  • 16
  • 15
  • 14
  • 14
  • 14
  • 14
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d’une nouvelle filière de transistors bipolaires à hétérojonction AlIn(As)Sb/GaInSb en vue applications térahertz / Development of antimonide-based heterojunction bipolar transistors for terahertz applications

Mairiaux, Estelle 07 October 2010 (has links)
Les semiconducteurs III-V antimoniés suscitent un intérêt grandissant pour les applications électroniques rapides et faible consommation. Ces matériaux de paramètre de maille supérieur à 6,1 Å se caractérisent par des mobilités élevées et offrent une souplesse inégalée pour l’ingénierie des bandes. En particulier, le composé ternaire GaInSb se pose comme un candidat de choix pour la base des transistors bipolaires à hétérojonction du fait de sa haute mobilité de trous. L’objectif de cette thèse est d’évaluer la faisabilité et les potentialités d’une nouvelle filière de TBH à base d’antimoine en s’appuyant sur des hétérostructures originales AlIn(As)Sb/GaInSb. La réalisation de composants dans ce système moins bien connu que les systèmes plus classiques InP/InGaAs ou InP/GaAsSb a nécessité le développement de briques technologiques propres. L’étude de solutions de gravure pour la réalisation des mesa a notamment été entreprise et a permis d’identifier de nouvelles solutions chimiques adaptées à la gravure sélective de ces matériaux. Une attention particulière a également été portée sur la minimisation des résistivités spécifiques de contact qui a permis de dégager les paramètres critiques à l’obtention de contacts ohmiques de bonne qualité sur les couches en GaInSb de types n et p. La technologie développée a rendu possible la fabrication de dispositifs présentant des fréquences de coupure fT de 52 GHz et fMAX de 48 GHz. La caractérisation électrique précise tant en régime statique que dynamique des composants fabriqués ainsi que l’extraction du modèle petit signal nous ont permis de déterminer les principales limitations de ces dispositifs. / The so-called ABCS (antimonide-based compound semiconductor) materials have a great potential for low power, high speed electronics as they have high electron and hole mobilities and provide a unique opportunity for bandgap engineering. The ternary material GaInSb has specifically recently emerged as a good candidate for the base layer of high performance heterojunction bipolar transistors (HBT). The purpose of this work is to demonstrate the feasibility and potentialities of a new antimonide-based HBT structure using AlIn(As)Sb/GaInSb heterojunctions. The fabrication of devices in this material system represents a new technological approach as compared to the conventional InP/GaInAs or InP/GaAsSb HBTs and has necessitated the development of various processing steps. In this study, we have investigated new selective chemical solutions to expose the base and the subcollector surface, as well as for achieving device isolation. High quality and reliable ohmic contacts has also been explored by investigating the factors that influence the specific contact resistivity, thermal stability, and shallowness of the ohmic contacts to n- and p-GaInSb. The fabricated devices demonstrated good microwave behaviour with a current gain cutoff frequency fT of 52 GHz and a maximum oscillation frequency fMAX of 48 GHz. Electrical analysis based on dc and RF measurements and a small signal equivalent circuit model enabled the determination of the limiting factors that need to be addressed for further improvement.
2

Vers une ingénierie de bandes des cellules photovoltaïques à hétérojonctions a-Si:H/c-Si.

Damon-Lacoste, Jérôme 05 July 2007 (has links) (PDF)
Cette thèse a initié en France la thématique des cellules solaires à hétérojonctions a-Si:H/c-Si. Cette technologie consiste à déposer des couches de silicium amorphe sur des substrats de silicium cristallin ce qui présente l'avantage (par rapport aux homojonctions) de fabriquer des cellules solaires à haut rendement entièrement à basse température (< 200 °C). Elle permet aussi de réaliser plus aisément des cellules sur substrats c-Si très minces (< 150 µm). Les sub-strats utilisés sont ici essentiellement des c-Si de type p. Les couches a-Si:H, pm-Si:H ou µc-Si sont déposées par RF-PECVD. Une attention particulière est portée au dépôt d'ITO, aux étapes de nettoyage et à la reproductibilité. Les cellules solaires ont été développées dans un souci constant d'industrialisation : grande surface (25 cm2) et métallisations bas coût sérigraphiées. Malgré cela, les rendements ont progressé de 9% à 17 % avec les meilleurs Vco compris entre 660 mV et 677 mV (à l'époque un record). Une excellente passivation a été obtenue avec une vitesse de recombinaison de 16 cm/s moyennée sur 25 cm2. Un travail plus théorique associant mesures ellipsométriques in situ, mesures HR-TEM et mesures de capacité, SIMS et simulations a permis d'obtenir plusieurs résultats originaux et de montrer que la physique des cellules à hétérojonctions a-Si:H/c-Si était encore mal comprise. Des paradoxes ont été découverts et élucidés concernant le rôle du « bombardement ionique », de la croissance épitaxiale et des discontinuités de bande. Une conclusion essentielle est que les discontinuités de bande du système a-Si:H/c-Si ne sont pas constantes et que leur valeur dépend (notamment) du contenu en hydrogène. Cela ouvre la voie à une ingénierie des discontinuités de bande des cellules solaires à hétérojonctions.
3

Vers une ingénierie de bandes des cellules solaires à hétérojonctions a-Si:H / c-Si. Rôle prépondérant de l'hydrogène.

Damon-Lacoste, J. 05 July 2007 (has links) (PDF)
Cette thèse a initié en France la thématique des cellules solaires à hétérojonctions a-Si:H/c-Si. Cette technologie consiste à déposer des couches de silicium amorphe sur des substrats de silicium cristallin ce qui présente l'avantage (par rapport aux homojonctions) de fabriquer des cellules solaires à haut rendement entièrement à basse température (< 200 °C). Elle permet aussi de réaliser plus aisément des cellules sur substrats c-Si très minces (< 150 μm). Les substrats utilisés sont ici essentiellement des c-Si de type p. Les couches a-Si:H, pm-Si:H ou μc-Si sont déposées par RF-PECVD. Une attention particulière est portée au dépôt d'ITO, aux étapes de nettoyage et à la reproductibilité. Les cellules solaires ont été développées dans un souci constant d'industrialisation : grande surface (25 cm2) et métallisations bas coût sérigraphiées. Malgré cela, les rendements ont progressé de 9 % à 17 % avec les meilleurs Vco compris entre 660 mV et 677 mV (à l'époque un record). Une excellente passivation a été obtenue avec une vitesse de recombinaison de 16 cm/s moyennée sur 25 cm2.<br /><br />Un travail plus théorique associant mesures ellipsométriques in situ, mesures HR-TEM et mesures de capacité, SIMS et simulations a permis d'obtenir plusieurs résultats originaux et de montrer que la physique des cellules à hétérojonctions a-Si:H/c-Si était encore mal comprise. Des paradoxes ont été découverts et élucidés concernant le rôle du « bombardement ionique »,<br />de la croissance épitaxiale et des discontinuités de bande. Une conclusion essentielle est que les discontinuités de bande du système a-Si:H/c-Si ne sont pas constantes et que leur valeur dépend (notamment) du contenu en hydrogène. Cela ouvre la voie à une ingénierie des discontinuités de bande des cellules solaires à hétérojonctions.
4

Les propriétés photoélectroniques de vitrocéramique de chalcogénures / The photoelectronic properties of chalcogenide glass ceramic

Xu, Yang 05 September 2014 (has links)
Une nouvelle famille de vitrocéramiques, avec une microstructure inédite, a été fabriquée par une cristallisation contrôlée des verres dans le système GeSe2-Sb2Se3-CuI. L'influence de la composition et du processus de cristallisation des verres de base, sur la microstructure et sur l’intensité du photo-courant des vitrocéramiques a été étudiée. Une composition optimisée, le 40GeSe2-40Sb2Se3-20CuI, a été particulièrement étudiée avec des résultats suivants: (1) Après une étude systématique , il a été constaté que cette composition donne la plus forte intensité de photo-courant parmi tous les verres étudiés dans ce système pseudo-ternaire GeSe2-Sb2Se3-Cul. Il a été également démontré que le photo-courant généré par différentes vitrocéramiques est non seulement déterminé par la composition, mais aussi par la microstructure composite de la vitrocéramique, qui est déterminée par le processus de céramisation. Ce processus de céramisation a ensuite été optimisé. Par rapport au procédé de traitement thermique en deux étapes, le procédé en une seule étape à basse température est une stratégie plus appropriée pour obtenir une microstructure efficace, favorisant la séparation des charges, construisant des canaux conducteurs et donnant une intensité de photo-courant élevée dans la vitrocéramique. (2) La microstructure composite inédite, discutée ci-dessus est composée de micro-domaines conducteurs interconnectés, formées par des cristaux Sb2Se3 faiblement conducteur en forme de tiges, couverts par des nano-cristaux de Cu2GeSe3 beaucoup plus conducteurs. Le procédé le plus probable de la photo-génération efficace des charges est le suivant: les photons sont efficacement et essentiellement absorbés par Sb2Se3 ainsi que par Cu2GeSe3. Les hétérojonctions formées par les Sb2Se3 du type n et les Cu2GeSe3 du type p, favorisent la séparation de charges, tandis que les Cu2GeSe3 interconnectées et conductrices fournissent des canaux conducteurs et jouent ainsi le rôle de collecteur efficace de charges. Il en résulte ainsi une très longue durée de vie des porteurs de charge et un fort photo-courant. (3) La formation de nano-hétérojonctions entre les cristaux Sb2Se3 et Cu2GeSe3 dans un seul micro-domaine peut conduire à une séparation efficace des électrons et des trous photo-générés. Par conséquent, pour application photo-catalytique, il n’est pas nécessaire de former des canaux conducteurs (conducteurs interconnectés des micro-domaines) dans l'ensemble de la vitrocéramique. De plus, la formation de ces canaux conducteurs, nécessiterait une augmentation de la durée ou/et la température de recuit, pouvant conduire à une diminution de l'activité photo-catalytique à cause de la taille relativement grande des grains cristallins. Les vitrocéramiques optimisées montrent une bonne capacité de désamination oxydative et une forte activité photo-catalytique en général, démontrant ainsi son potentiel en tant que photo-catalyseur efficace. / A totally new family of glass ceramics with a unique microstructure was fabricated by controlling the crystallization of the GeSe2-Sb2Se3-CuI glass system. The influences of the material composition and the crystallizing process of the precursor glasses on the microstructure and photocurrent of the prepared glass ceramics were investigated. An optimized composition, 40GeSe2-40Sb2Se3-20CuI, was particularly studied with the following significant results: (1) After a systematic study, it was found that this particular composition shows the highest photocurrent density among all studied glasses in the pseudo-ternary GeSe2-Sb2Se3-CuI system. It is also demonstrated that the photocurrent generated by different glass ceramics is not only determined by the composition, but also by the composite microstructure of the glass ceramic, which is determined by the ceramisation process. This process was then carefully studied. Compared with the two-step heat treatment process, the single-step process at a low temperature is a more efficient strategy to build up an efficient composite microstructure, which promotes charge carrier separation and provides a conductive channel, leading to a high photocurrent intensity in the glass ceramic. (2) The above-mentioned unique composite microstructure is composed of interconnected conductive microdomains, formed by low conductive rod-like Sb2Se3 crystals, covered by relatively high conductive Cu2GeSe3 nanocrystals. The most likely process for efficient photogeneration of charges is proposed as follows: photons are efficiently and essentially absorbed by Sb2Se3 as well as by Cu2GeSe3, and then the heterojunction formed by n-type Sb2Se3 and p-type Cu2GeSe3 promotes the charge separation, whereas the oriented and relatively conductive Cu2GeSe3 aggregate provides a conductive channel and plays the role of efficient charge collector. This structure results in exceptionally long lifetime of charge carriers (around 16 µs) and high photocurrent (at least 100 times higher than any of Sb2Se3 and Cu2GeSe3 individually). (3) The formation of nano-heterojunctions between Sb2Se3 and Cu2GeSe3 crystals within a single conductive microdomain can fully lead to an efficient separation of photo-generated electrons and holes. Therefore, for the photocatalytic application, it is unnecessary to form conductive channels (interconnected conductive microdomains) in the whole glass ceramic. Moreover, in order to form conductive channels, the necessary increase of annealing time or/and temperature may decrease the photocatalytic activity due to its relatively large crystal grain size. The optimized glass ceramic exhibits a good oxidative deamination ability and high photocatalytic activity, demonstrating its potential as an efficient photocatalyst.
5

Microréacteurs photocatalytiques utilisant des oxydes métalliques semi-conducteurs sensibilisés par des Quantum Dots CuInS2/ZnS / Photocatalytic microchannel reactors using metal-oxide semiconductors sensitized with CuInS2/ZnS quantum dots

Donat, Florian 20 July 2017 (has links)
La pollution actuelle des effluents hospitaliers par des médicaments, nécessite le développement de nouvelles techniques de traitement, la photocatalyse étant l’une des plus efficaces pour remédier à ce type de pollution. Cependant, les oxydes métalliques utilisés pour la photocatalyse (TiO2, ZnO, …) ne sont activables que sous irradiation UV. L’association de ces oxydes à des Quantum Dots (QDs), crée une hétérojonction qui étend la zone d’activation du photocatalyseur vers les rayonnements visibles et diminue les recombinaisons des porteurs de charges. La première partie de ce travail décrit le développement d’un photocatalyseur activable sous irradiation solaire pour la dégradation du colorant Orange II. Nous avons d’abord caractérisé l’hétérojonction créée entre ZnO et les QDs CuInS2/ZnS (ZCIS) puis étudié leur efficacité photocatalytique, en regardant notamment leurs capacités à générer des espèces réactives de l’oxygène. Dans la seconde partie, nous avons évalué la photodégradation d’un agent anticancéreux, l’Ifosfamide, présent dans les effluents hospitaliers. Pour cela, des réacteurs fermés agités et des microréacteurs ont été utilisés. Dans les deux cas, l’Ifosfamide, ainsi que ses intermédiaires de dégradation, sont photodégradés efficacement par le catalyseur ZnO/ZCIS sous une irradiation solaire de faible intensité (5 mW/cm2). Dans le cas des microréacteurs, le dépôt du catalyseur dans le microcanal a été optimisé et sa stabilité évaluée. Les résultats montrent que le catalyseur ZnO/ZCIS est réutilisable cinq fois sans perte d’activité, témoignant d’une bonne recyclabilité, ce qui en fait un bon candidat pour des applications photocatalytiques / The pollution of hospital effluents by pharmaceutical drugs, requires the development of new treatment techniques. Among these processes, photocatalysis is one of the most efficient one and allows the remediation of this kind of pollution. However, metal oxides used for photocatalysis (TiO2, ZnO, …) can only be activated by UV light. The association of these oxides with quantum dots (QDs) creates an heterojunction, which not only allows to extend the activation spectrum of the photocatalyst to the visible region but also decreases the charge carriers recombinations. The first part of this work describes the development of a catalyst responding to solar light irradiation for the degradation of the Orange II dye. First, we characterized the heterojunction created between ZnO and the CuInS2/ZnS (ZCIS) QDs and evaluated their photocatalytic efficiency. This work was undertaken by evaluating the capacity of the ZnO/ZCIS catalyst to produce reactive oxygen species (ROS). In the second part, we studied the photodegradation of the antineoplastic agent Ifosfamide commonly found in hospital effluents. For this purpose, closed and agitated reactors but also microreactors were used. In both cases, Ifosfamide, and the compounds originating from its degradation, can be fully photodegraded under simulated light of weak intensity (5 mW/cm2) using the ZnO/ZCIS catalyst. In the case of microreactors, the deposition of the catalyst was optimized and its stability evaluated. Results obtained demonstrate that the ZnO/ZCIS catalyst can be reused, at least five times, without significant loss in activity, thus demonstrating its ability to be used in real photocatalytic applications
6

Fabrication et caractérisation de cellules photovoltaïques à base de phosphure de gallium sur silicium / Fabrication and characterisation of photovoltaic cells based on gallium phosphide on silicon

Descazeaux, Médéric 28 November 2017 (has links)
Dans le cadre de la transition énergique, le déploiement de sources d’énergies ne produisant pas de gaz à effet de serre devient primordial. Bénéficiant de la surabondante énergie fournie par le Soleil, le photovoltaïque est un des éléments-clés du bouquet énergétique du futur. Le marché du photovoltaïque est actuellement dominé par les technologies à base de silicium et les meilleurs rendements de conversion dépassent les 26% avec la technologie de cellules à hétérojonction de silicium amorphe hydrogéné (a-Si:H) sur silicium monocristallin (c-Si).Le silicium amorphe hydrogéné, déposé par PECVD, permet d’obtenir une excellente passivation de la surface du substrat de silicium cristallin, et ainsi d’obtenir des tensions de circuit ouvert au-delà de 730 mV. Cependant l’a-Si:H montre une absorption parasite des photons ultraviolets, et sa faible conductivité limite la longueur de diffusion des porteurs de charge générés en son sein, limitant la performance électrique et aussi leur contribution au courant de la cellule.Pour augmenter le rendement de cette technologie, nous proposons de fabriquer et de caractériser une nouvelle structure de cellules photovoltaïques à base d'hétérojonction de phosphure de gallium (GaP) sur c-Si, déposé par dépôt en phase vapeur aux organométalliques (MOCVD). Matériau III-V, cristallin, et à énergie de bande interdite élevée (2.26 eV contre 1.6-1.9 eV pour l’a-Si:H et 1.12 eV pour le c-Si), le GaP permettrait une croissance par épitaxie sur le c-Si, une meilleure transparence face à l’a-Si:H, ainsi qu’une passivation par effet de champ repoussant les trous, porteurs de charge positive, loin de l’interface GaP/Si. Les améliorations des caractéristiques courant-tension de telles cellules avec seulement 10 nm de GaP ont précédemment montré, par simulation, une amélioration des rendements de 2% en absolu.Dans le cadre de cette thèse, nous avons étudié expérimentalement l’effet du dépôt de GaP sur le c-Si. Nous avons mis en évidence une dégradation de la durée de vie des porteurs dans le c-Si lors d’une étape de préparation de surface pour améliorer l’épitaxie du GaP, qui favoriserait la diffusion de contaminants issus de la chambre de dépôts III-V dans le substrat. Cette étape pourrait être retirée, mais elle est nécessaire pour limiter l’émergence de domaines d’antiphase, défauts cristallins liés à la nature polaire des liaisons Ga-P qui limitent aussi la durée de vie des porteurs. De plus, la durée de vie à l’interface GaP/Si est demeure inférieure à 150 µs, malgré l’hypothétique passivation par effet de champ et sans défauts cristallins.Se basant sur ces découvertes, nous avons cherché à comprendre et améliorer la passivation de l’interface GaP/Si. Des techniques d’analyses avancées ont montré la présence de traces de carbone et d’arsenic dans le GaP, accompagné de fluor à l’interface, ainsi qu’une oxydation du GaP post-épitaxie. Différentes couches de mouillage ont été testées, permettant de corréler la rugosité, la défectuosité du GaP à la durée de vie des porteurs.D’autre part, l’intégration d’étapes de décontamination du substrat (gettering) a permis avec succès de restaurer la durée de vie volumique des charges tout en maintenant le recuit de reconstruction de surface dans le procédé de fabrication. Ces étapes ont été optimisées pour minimiser leur impact sur la couche de GaP. Un cellule avec GaP déposé sans pré-recuit atteint 11.2% tandis qu’en reléguant le GaP à une couche fenêtre, une cellule GaP/(n+)c-Si/(p)c-Si a montré un rendement amélioré à 13.8% avec le recuit et les étapes de gettering.Ce travail s'appuie sur l'expertise du CEA-INES en cellules solaires à hétérojonctions et du CNRS-LTM en épitaxie et caractérisation des matériaux III/V. / In the frame of energy transition, the development of energy sources that do not generate greenhouse gases is paramount. Benefiting from the overabundant energy provided by the Sun, photovoltaics is a key element of the future energy mix. Photovoltaics market is currently led by the silicon-based technologies, and best conversion efficiencies exceed 26% with the heterojunction solar cells technology with hydrogenated amorphous silicon (a-Si:H) on monocrystalline silicon (c-Si).Hydrogenated amorphous silicon, deposited by PECVD, enables high surface passivation of crystalline silicon, and to reach over 730 mV of open-circuit voltage. However, the parasitic absorption in the Ultra Violet region limits photon collection, and its low conductivity limits the diffusion length of charge carriers it generates, limiting the electrical performance and their contributions to the cell current.To enhance the efficiency of this technology, we propose to fabricate and characterise a new structure of photovoltaic solar cells based on heterojunction of gallium phosphide on crystalline silicon, made by metalorganic chemical vapour deposition (MOCVD). This crystalline III-V material, with high bandgap energy (2.26 eV vs 1.6-1.9 for a-Si:H and 1.12 eV for c-Si), allows its pseudomorphic epitaxy on silicon, with higher transparency vs a-Si:H along with field effect passivation that repels the holes, positive charge carriers, away from the GaP/Si interface. The improvement of current-voltage characteristics, with only 10-nm-thick GaP, have previously shown by simulation an absolute improvement of the efficiency by 2%.In the frame of this thesis, we have experimentally studied the effect of GaP deposition on c-Si. We have outlined a carrier lifetime degradation in c-Si during a surface preparation annealing that favours the diffusion of contaminants from the III-V MOCVD chamber into the substrate. This step could be removed, but it is required to limit the formation of antiphase domains, which are crystalline defects linked to the polarity of Ga-P bonds that also limit the carrier lifetime. Moreover, GaP/Si interface lifetime remains below 150 µs, despite the hypothetic field effect passivation and without crystalline defects.From these conclusions, we sought to understand and improve the GaP/Si interface passivation. Advanced analysis techniques have shown carbon and arsenic traces in the GaP, with fluorine at the interface, as well as post-epitaxy GaP oxidation. Different wetting layers were tested, correlating the roughness and defectivity of Gap to the carrier lifetime.Furthermore, integration of substrate decontamination steps (gettering) enables successful bulk carrier lifetime recovery while maintaining the surface reconstruction annealing in the process flow. These steps were optimised to minimise their impact the GaP layer. A solar cell with GaP deposited on unannealed silicon reached 11.2% while, making GaP a window layer in a GaP/(n+)c-Si/(p)c-Si stack produced a solar cell with 13.8% with annealing and gettering steps.This work relies on the expertise of CEA-INES on heterojunction solar cells and CNRS-LTM on the epitaxy of III-V materials and their characterisation.
7

Nouveaux polymères π-conjugués pour la conversion photovoltaïque de l'énergie solaire

Bricaud, Quentin 22 October 2008 (has links) (PDF)
Ce travail porte sur la synthèse de nouveaux polymères conjugués à base de thiophène et leur utilisation comme matériaux actifs donneurs dans des cellules photovoltaïques organiques. Après une introduction exposant les concepts de base de la conversion photovoltaïque, une première partie est dédiée à la synthèse et la caractérisation de polymères intrinsèquement régio-réguliers obtenus par oxydation chimique à partir de motifs 3,3''-dialkyl-2,2':5',2''-terthiophènes. La seconde partie est consacrée à l'élaboration de polythiophènes régio-réguliers, analogues au poly(3-hexylthiophène) P3HT. Les polymères dont les chaînes substituantes incorporent des fonctions éther, ont été obtenus par une réaction de métathèse de Grignard (GRIM). La dernière partie porte sur la synthèse de polymères Donneur-Accepteur à gap réduit obtenus par condensation de Knoevenagel. Dans tous les cas, les polymères synthétisés ont été incorporés dans des cellules solaires afin d'évaluer leur potentiel pour la conversion photovoltaïque.
8

Epitaxies Si/SiGe(C) pour transistors bipolaires avancés

Brossard, Florence 14 May 2007 (has links) (PDF)
L'objectif de cette thèse est d'étudier les épitaxies SiGeC sélectives par rapport au nitrure de silicium afin d'améliorer les performances en fréquence des transistors bipolaires à hétérojonction à structure complètement auto alignée. Pour répondre à cette attente, le système SiH4/GeH4/SiH3CH3/HCl/B2H6/H2 est utilisé pour élaborer nos épitaxies sélectives.<br />Cette chimie à base de silane permet d'augmenter significativement la vitesse de croissance par rapport au système SiCl2H2/GeH4/HCl/H2 utilisé classiquement, aussi bien pour un dépôt silicium sélectif que pour un film SiGe sélectif. Par exemple, pour un film Si0,75Ge0,25 la vitesse de croissance est multipliée par un facteur 8.<br />L'incorporation des atomes de carbone dans les sites substitutionnels est facilitée par cette hausse du taux de croissance. En effet, la teneur en carbone substitutionnel est plus élevée en utilisant le silane comme précurseur de silicium (jusqu'à un facteur 4). L'effet bloquant du carbone sur la diffusion du bore est alors meilleur et le dopant est mieux contenu dans la base Si/SiGeC:B. Cette meilleure incorporation du carbone se reflète dans les résultats électriques. Le courant IB n'augmente pas aux fortes concentrations de carbone, ce qui signifie qu'il n'y a pas de centres recombinants dans la base. Le courant IC et la fréquence fT augmentent aussi, ce qui suggère que la largeur de la base neutre est plus fine et donc que la diffusion du bore est ralentie.<br />Nous avons également mis en évidence l'existence d'une corrélation entre le courant IB et l'intensité du signal de photoluminescence à température ambiante. En effet, considérant que leurs mécanismes de recombinaison sont similaires, nous avons noté que la hausse de IB correspond à la chute de la photoluminescence.
9

Les propriétés photoélectroniques de vitrocéramique de chalcogénures

Xu, Yang 05 September 2014 (has links) (PDF)
Une nouvelle famille de vitrocéramiques, avec une microstructure inédite, a été fabriquée par une cristallisation contrôlée des verres dans le système GeSe2-Sb2Se3-CuI. L'influence de la composition et du processus de cristallisation des verres de base, sur la microstructure et sur l'intensité du photo-courant des vitrocéramiques a été étudiée. Une composition optimisée, le 40GeSe2-40Sb2Se3-20CuI, a été particulièrement étudiée avec des résultats suivants: (1) Après une étude systématique , il a été constaté que cette composition donne la plus forte intensité de photo-courant parmi tous les verres étudiés dans ce système pseudo-ternaire GeSe2-Sb2Se3-Cul. Il a été également démontré que le photo-courant généré par différentes vitrocéramiques est non seulement déterminé par la composition, mais aussi par la microstructure composite de la vitrocéramique, qui est déterminée par le processus de céramisation. Ce processus de céramisation a ensuite été optimisé. Par rapport au procédé de traitement thermique en deux étapes, le procédé en une seule étape à basse température est une stratégie plus appropriée pour obtenir une microstructure efficace, favorisant la séparation des charges, construisant des canaux conducteurs et donnant une intensité de photo-courant élevée dans la vitrocéramique. (2) La microstructure composite inédite, discutée ci-dessus est composée de micro-domaines conducteurs interconnectés, formées par des cristaux Sb2Se3 faiblement conducteur en forme de tiges, couverts par des nano-cristaux de Cu2GeSe3 beaucoup plus conducteurs. Le procédé le plus probable de la photo-génération efficace des charges est le suivant: les photons sont efficacement et essentiellement absorbés par Sb2Se3 ainsi que par Cu2GeSe3. Les hétérojonctions formées par les Sb2Se3 du type n et les Cu2GeSe3 du type p, favorisent la séparation de charges, tandis que les Cu2GeSe3 interconnectées et conductrices fournissent des canaux conducteurs et jouent ainsi le rôle de collecteur efficace de charges. Il en résulte ainsi une très longue durée de vie des porteurs de charge et un fort photo-courant. (3) La formation de nano-hétérojonctions entre les cristaux Sb2Se3 et Cu2GeSe3 dans un seul micro-domaine peut conduire à une séparation efficace des électrons et des trous photo-générés. Par conséquent, pour application photo-catalytique, il n'est pas nécessaire de former des canaux conducteurs (conducteurs interconnectés des micro-domaines) dans l'ensemble de la vitrocéramique. De plus, la formation de ces canaux conducteurs, nécessiterait une augmentation de la durée ou/et la température de recuit, pouvant conduire à une diminution de l'activité photo-catalytique à cause de la taille relativement grande des grains cristallins. Les vitrocéramiques optimisées montrent une bonne capacité de désamination oxydative et une forte activité photo-catalytique en général, démontrant ainsi son potentiel en tant que photo-catalyseur efficace.
10

Cellules solaires hybrides en couches minces à base de silicium nano-structuré et de polymères semiconducteurs.

Alet, Pierre-Jean 14 November 2008 (has links) (PDF)
Cette thèse présente un travail exploratoire sur des cellules solaires hybrides, basées sur un matériau inorganique (le silicium) et un polymère (le P3HT). Cette structure a été imaginée pour améliorer les cellules à bas coûts à base de matériaux organiques. Nous démontrons ici sa faisabilité expérimentale et analysons son fonctionnement. L'hétérojonction entre le silicium et le P3HT a été étudiée sur des dispositifs en bicouches planes. Nous montrons qu'elle fournit de l'énergie électrique et que les deux matériaux peuvent contribuer au photocourant. Des rendements de 1,6 % ont été obtenus. Un effort constant a été fait pour simplifier et fiabiliser les procédés de fabrication. Deux nouveaux types de silicium nano-structuré ont été développés. Des ``nano-éponges'', dont la taille typique des pores est de 20 nm, ont été obtenues à l'aide de catalyseurs métalliques par dépôts assistés par plasma à 175 °C. Des nanofils de silicium ont été formés par un procédé inédit : les substrats sont des oxydes transparents conducteurs, les catalyseurs sont générés in situ et la température de croissance est inférieure à 300 °C. La phase würtzite a été mise en évidence dans certains fils, et divers modes de croissance ont été observés. Ces deux nouveaux types de couches minces pourront aussi être utilisées dans des cellules solaires inorganiques.

Page generated in 0.0915 seconds