81 |
A search for neutral high-mass Higgs bosons decaying into pairs of hadronically decaying tau leptons in 13 TeV collisions recorded by the ATLAS detectorPickering, Mark Andrew January 2016 (has links)
This thesis outlines the search for neutral Higgs bosons in a mass range of m<sub>H/A</sub> = 200 GeV â 1.2 TeV, decaying to a pair of hadronically decaying tau leptons. The search is performed using √s = 13 TeV proton-proton collision data, corresponding to an integrated luminosity of 3.21 fb<sup>-1</sup>, recorded by the ATLAS detector. No excess over the predicted Standard Model background is observed and upper limits are placed on the production cross section times branching fraction as a function of the mass of the scalar resonance. When combined with the results of the analysis where one of the tau leptons decays to either a muon or electron, the 95% confidence level upper limit on the cross section times branching fraction ranges from 1.4 pb at m<sub>H/A</sub> = 200 GeV to 0.025 pb at m<sub>H/A</sub> = 1.2 TeV for a scalar boson produced via gluon-gluon fusion, and 1.6 pb at m<sub>H/A</sub> = 200 GeV to 0.028 pb at m<sub>H/A</sub> = 1.2 TeV for a scalar boson produced via b-associated production. The results are interpreted in the Minimal Supersymmetric extension to the Standard Model (MSSM) as a limit on the value of tanβ, as a function of the mass of the neutral CP-odd MSSM Higgs boson. In the mmod+ scenario, the 95% confidence level upper limit is tanβ < 7.6 for m<sub>A</sub> = 200 GeV, and tanβ < 47 for m<sub>A</sub> = 1 TeV. For the mass range m<sub>A</sub> > 500 GeV, the upper limit on tanβ is improved in comparison to previous ATLAS searches.
|
82 |
A study of longitudinal Hadronic shower leakage and the development of a correction for its associated effects at √s = 8 TeV with the ATLAS detectorGupta, Shaun January 2015 (has links)
In the high energy environment of the Large Hadron Collider, there is a finite probability for the longitudinal tail of the hadronic shower represented by a jet to leak out of the calorimeter, commonly referred to as longitudinal hadronic shower leakage, or jet 'punchthrough'. This thesis prescribes a method for identifying such 'punch-through' jets via the use of muon activity found behind a jet in the ATLAS muon spectrometer, finding an occurrence rate of up to 18% in the worst affected regions. 'Punch-through' jets were found to degrade the measured jet energy scale by up to 30%, and jet energy resolution by a factor of 3. A correction to remove these effects was developed in Monte Carlo and validated in data, with associated systematic uncertainties derived. The correction was found to negate the degradation of the measured jet energy scale, improving the jet energy resolution by up to 10% in the worst affected regions, and up to 1.6% overall. The correction was integrated into the final 2012 ATLAS jet energy calibration scheme as the fifth step of the Global Sequential corrections. The prescription developed in this thesis to derive the correction is currently being used by ATLAS in Run II of the Large Hadron Collider.
|
83 |
Calculation of webs in non-Abelian gauge theories using unitarity cutsWaelkens, Andries Jozef Nicolaas January 2017 (has links)
When calculating scattering processes in theories involving massless gauge bosons, such as gluons in Quantum Chromodynamics (QCD), one encounters infrared (IR), or soft, divergences. To obtain precise predictions, it is important to have exact expressions for these IR divergences, which are present in any on-shell scattering amplitude. Due to their long wavelength, soft gluons factorise with respect to short-distance, or hard, interactions and can be captured by correlators of semi-infinite Wilson lines. The latter obey a renormalisation group equation, which gives rise to exponentiation. The exponent can be represented diagrammatically in terms of weighted sums of Feynman diagrams, called webs. A web with L external legs, each with ni gluon attachments, is denoted (n1; n2; : : : ; nL). In this way all soft gluon interactions can be described by a soft anomalous dimension. It is currently known at three loops with lightlike kinematics, and at two loops with general kinematics. Our work is a step towards a three-loop result in general kinematics. In recent years, much progress has been made in understanding the general physical properties of scattering amplitudes and in exploiting these properties to calculate specific amplitudes. At the same time, we have discovered a lot of structure underpinning the space of multiple polylogarithms, the functions in terms of which most known amplitudes can be written. General properties include analyticity, implying that scattering amplitudes are analytic functions except on certain branch cuts, and unitarity, or conservation of probability. These two properties are both exploited by unitarity cuts. Unitarity cuts provide a diagrammatic way of calculating the discontinuities of a Feynman diagram across its branch cuts, which is often simpler than calculating the diagram itself. From this discontinuity, the original function can be reconstructed by performing a dispersive integral. In this work, we extend the formalism of unitarity cuts to incorporate diagrams involving Wilson-line propagators, where the inverse propagator is linear in the loop momenta, rather than the quadratic case which has been studied before. To exploit this for the calculation of the soft anomalous dimension, we first found a suitable momentum-space IR regulator and corresponding prescription, and then derived the appropriate largest time equation (LTE). We find that, as in the case of the scalar diagrams, most terms contributing to the LTE turn out to be zero, albeit for different reasons. This simplifies calculations considerably. This formalism is then applied to the calculation of webs with non-lightlike Wilson lines. As a test, we first looked at webs that have been previously studied using other methods. It emerges that, when using the correct variables, the dispersive integrals one encounters here are trivial, illustrating why unitarity cuts are a particularly useful tool for the calculation of webs. We observe that our technique is especially efficient when looking at diagrams involving three-gluon vertices, such as the (1; 1; 1) web and the Y diagram between two lines. We then focus on three-loop diagrams connecting three or four external non-lightlike lines and involving a three-gluon vertex. We calculate the previously unknown three-loop three-leg (1; 1; 3) web in general kinematics. We obtain a result which agrees with the recently calculated lightlike limit. We also develop a technique to test our results numerically using the computer program SecDec, and we find agreement with our analytical result. The result for the (1; 1; 3) web can then be exploited to gain insight into the more complicated three-loop four-leg (1; 1; 1; 2) web. Indeed, the (1; 1; 1; 2) web reduces to the (1; 1; 3) web in a certain collinear limit. We propose an ansatz for the (1; 1; 1; 2) web in general kinematics, based on a conjectured basis of multiple polylogarithms. The result for the (1; 1; 3) web, together with the known result for the lightlike limit of the (1; 1; 1; 2) web, imposes strong constraints on the ansatz. Using these constraints, we manage to fix all but four coefficients in the ansatz. We fit the remaining coefficients numerically, but find that the quality of the fit is not good. We find possible explanations for this poor quality. This calculation is still a work in progress. Our results provide a major step towards the full calculation of the three-loop soft anomalous dimension for non-lightlike Wilson lines. We calculated new results for three-loop webs, and also deepened the understanding of webs in general. We confirm a conjecture about the functional dependence of the soft anomalous dimension on the cusp angles. We also confirm earlier findings about the symbol alphabet of the relevant functions. This confirms the remarkable simplicity found earlier in the expressions for the soft anomalous dimension.
|
84 |
Measurements of charmless B⁰s meson decays at LHCbMorris, Adam Benjamin January 2017 (has links)
Using 3 fbˉ1 of proton-proton collisions, collected at centre-of-mass energies of √s = 7 and 8 TeV by the LHCb detector, several measurements of charmless B⁰s meson decays are made. A search is also performed for a highly suppressed B⁰ decay. First, the branching fraction of the B0⁰s→ ØØ decay is measured to be B(B⁰s→ ØØ) = (1.84 ± 0.05(stat) ± 0.07(syst) ± 0.11(fs=fd) ± 0.12(norm))X10ˉ⁵; where the third and fourth uncertainties arise from the fragmentation fraction fs/fd and the branching fraction of the normalisation mode. This represents a factor of five reduction in the statistical uncertainty compared to the previous best measurement. An upper limit on the branching fraction of the mode B⁰→ ØØ is set at B(B⁰→ ØØ) < 2.8 X 10ˉ⁸ (90% CL). This is a factor of seven improvement over the previous best measurement. An amplitude analysis of the B⁰s→ ØK+Kˉ decay is performed, wherein first observations of the decay modes B⁰s→ Øf´2(1525) and B⁰s→ ØØ(1680) are made. The branching fraction of the B⁰s→ Øf´2(1525) decay is measured to be B(B⁰s→ Øf´2 (1525)) = (1.63 ± 0.18(stat) ± 0.12(syst) ± 0.29(model) ± 0.17(norm)) X 10ˉ⁶; where the 'model' uncertainty arises from the choice of amplitude model. The longitudinal polarisation fraction of the decay B⁰s→ Øf´2(1525) is measured to be F0 = (86.6 ± 3.4 ± 0.8 ± 2.0 (model))%.
|
85 |
Subleading corrections to hadronic cross-sections at high energiesCockburn, James David January 2017 (has links)
The Large Hadron Collider (LHC) has provided, and will continue to provide, data for collisions at the highest energies ever seen in a particle accelerator. A strong knowledge of the properties of amplitudes for Quantum Chromodynamics in the High Energy Limit is therefore important to interpret this data. We study this limit in the context of the High Energy Jets (HEJ) formalism. This formalism resums terms in the perturbative expansion of the cross-section that behave like αn/s log (s/-t)ⁿ¯¹, which are enhanced in this limit. Understanding this region is particularly important in certain key analyses at the LHC: for example, Higgs-boson- plus-dijet analyses where cuts are applied to pick out events with a large mjj and in many searches for new physics. In this thesis, we discuss two directions in which HEJ's accuracy has been improved. Firstly, we look at adding descriptions of partonic subprocesses which are formally sub-leading in the jet cross-section but Leading Logarithmic (LL) in the particular subprocess itself. This required the derivation of new effective vertices that describe the emission of a quark/anti-quark pair in a way that is consistent with the resummation procedure. The inclusion of such processes reduces HEJ's dependence on fixed-order calculations and marks an important step towards full Next-to-Leading Logarithmic (NLL) accuracy in the inclusive dijet cross-section. The second extension was to improve our description of events involving the emission of a Higgs boson along with jets. Specifically, we derive new effective vertices which keep the full dependence on the quark mass that appears in the loops that naturally arise in such amplitudes. The formalism is also simple enough to allow for any number of extra nal state jets in the process. Therefore, HEJ is unique in its ability to provide predictions for high-multiplicity Higgs-plus-jets processes with full nite quark mass e ects. Such a calculation is far beyond the reach of any xed order approach.
|
86 |
Tale of two loops : simplifying all-plus Yang-Mills amplitudesMogull, David Gustav January 2017 (has links)
Pure Yang-Mills amplitudes with all external gluons carrying positive helicity, known as all-plus amplitudes, have an especially simple structure. The tree amplitudes vanish and, up to at least two loops, the loop-level amplitudes are related to those of N = 4 super-Yang-Mills (SYM) theory. This makes all-plus amplitudes a useful testing ground for new methods of simplifing more general classes of amplitudes. In this thesis we consider three new approaches, focusing on the structure before integration. We begin with the planar (leading-colour) sector. A D-dimensional local-integrand presentation, based on four-dimensional local integrands developed for N = 4 SYM, is developed. This allows us to compute the planar six-gluon, two-loop all-plus amplitude. Its soft structure is understood before integration, and we also perform checks on collinear limits. We then proceed to consider subleading-colour structures. A multi-peripheral colour decomposition is used to find colour factors based on underlying tree-level amplitudes via generalised unitarity cuts. This allows us to find the integrand of the full-colour, two-loop, five-gluon all-plus amplitude. Tree-level BCJ relations, satisfied by amplitudes appearing in the cuts, allow us to deduce all the necessary non-planar information for the full-colour amplitude from known planar data. Finally, we consider representations satisfying colour-kinematics duality. We discuss obstacles to finding such numerators in the context of the same five-gluon amplitude at two loops. The obstacles are overcome by adding loop momentum to our numerators to accommodate tension between the values of certain cuts and the symmetries of certain diagrams. Control over the size of our ansatz is maintained by identifying a highly constraining, but desirable, symmetry property of our master numerator.
|
87 |
Searching for new particles at the Large Hadron Collider : theory and methods for extradimensional supersymmetryScoville, James January 2015 (has links)
The hierarchy problem of the electroweak scale is an intriguing puzzle which can conceivably be solved during upcoming runs of the Large Hadron Collider (LHC). Supersymmetry (SUSY) is an attractive potential solution to this problem, though the fact that no supersymmetric particles have been discovered thus far raises fine tuning of most models to ℴ(1%). Extradimensional SUSY is especially interesting in light of this fact since certain models are easier to reconcile with LHC data. This thesis discusses two different extradimensional SUSY scenarios: auto-concealment and Maximally Natural SUSY (MNSUSY). The auto-concealment mechanism applies when the lightest ordinary superymmetric particle (LOSP), a brane localized state, promptly decays to the Kaluza-Klein (KK) tower of a bulk lightest supersymmetric particle (LSP). This dynamically realizes the compression mechanism for hiding SUSY as decays into the more numerous heavier KK LSP states are favored. LHC limits on LOSP squarks weaken to ≲ 450 GeV while limits on LOSP right-handed sleptons evaporate. Slepton searches perform poorly in this case because LHC analyses are blind to compressed slepton spectra. To help fill this gap, this thesis presents a monojet-like search sensitive to the very compressed range 3 GeV < m <sub>ĩ</sub> â m<sup>∼</sup><sub style='position: relative; left: -.7em;'>x</sub><sup>0</sup><sub style='position: relative; left: -.6em;'>1</sub> < 24 GeV. The analysis should allow LHC14 with 100 fb<sup>â1</sup> to search for degenerate left-handed selectrons and smuons in the compressed region up to m <sub>ĩ<sub>L</sub></sub> ≲ 150 GeV. In addition, it should be sensitive to m <sub>ĩ<sub>L</sub></sub> ≲ 110 GeV for auto-concealed SUSY. To expand the class of extradimensional SUSY models the LHC is able to test this thesis also describes the Lagrangian and mass matrices of MNSUSY, which are needed to implement this model in the Feynman rules generator program FeynRules for use in Monte Carlo programs for collider simulations. It also describes benchmark scenarios useful for the first collider phenomenology studies.
|
88 |
Closure tested parton distributions for the LHCDeans, Christopher Scott January 2016 (has links)
Parton distribution functions (PDFs) provide a description of the quark and gluon content of the proton. They are important input into theoretical calculations of hadronic observables, and are obtained by fitting to a wide range of experimental data. The NNPDF approach to fitting PDFs provides a robust and reliable determination of their central values and uncertainties. The PDFs are modelled using neural networks, while the uncertainties are generated through the use of Monte Carlo replica datasets. In this thesis I provide an in depth description of development of the latest NNPDF determination: NNPDF3.0. A number of novel adaptations to the genetic algorithm and network structure are outlined and the results of tests as to their effectiveness are shown. Centrally, the use of closure tests, where artificial data is generated according to a known theory and used to perform a fit, has been instrumental in both the development and validation of the NNPDF3.0 approach. The results of these tests, which demonstrate the ability of our methodology to reproduce a known underlying law, are investigated in detail. Finally, results from the NNPDF3.0 PDF sets are presented. The parton distributions obtained are compared with results from other PDF collaborations, and PDFs fit to limited datasets are also discussed. Physical observables relevant for future collider runs are presented and compared to other determinations.
|
89 |
Searching for Vector-Like Quarks Using 36.1 fb^{-1} Of Proton-Proton Collisions Decaying to Same-Charge Dileptons and Trileptons + b-jets at √s = 13 TeV with The ATLAS DetectorJones, Sarah, Jones, Sarah January 2017 (has links)
Since the discovery of the Higgs boson in 2012, the search for new physics beyond
the Standard Model has been greatly intensified. At the CERN Large Hadron Collider
(LHC), ATLAS searches for new physics entail looking for new particles by colliding
protons together. Presented here is a search for a new form of quark matter called
Vector-like Quarks (VLQ), which are hypothetical particles that are expected to have
mass around a few TeV. VLQ can come in a variety of forms and can couple to
their Standard Model (SM) quark counterparts, particularly to the third generation.
They are necessary in several beyond the SM theories in order to solve the hierarchy
problem. This search uses 36.1 fb−1of proton-proton collision data collected with the
ATLAS detector at the LHC from August 2015 to October 2016. Only events with two
leptons of the same charge, or three leptons, plus b-jets and high missing transverse
energy are considered in the main analysis. This signature is rarely produced in the
SM, which means the backgrounds in this analysis are relatively low. This analysis
is sensitive to specific predicted decay modes from pair production of an up-type
VLQ with a charge of +2/3, T, an up-type VLQ with a charge of +5/3, T5/3, and
a down-type quark with a charge of −1/3, B, as well as single production of T5/3.
There is another theorized VLQ that this analysis is not sensitive to: B−4/3, due
to its primary decay mode, which is unable to produce the final-state signature of
interest. The results from this analysis suggest only a slight deviation of data from
SM backgrounds reaching as high as 1.89σ, which does not indicate evidence for
VLQ. A mostly frequentist statistical technique, called the CLS Method, is used to
interpret the data and set limits on the T, B, and T5/3 signal models. Using this
method, exclusion limits are set at the 95% confidence level, effectively excluding T
mass below 0.98 TeV, T5/3 mass below 1.2 TeV, and B mass below 1.0 TeV, assuming
singlet branching ratios. Also, branching ratio independent limits are set on the T
and B VLQ.
|
90 |
Phenomenology at a future 100 TeV hadron colliderFerrarese, Piero 03 November 2017 (has links)
No description available.
|
Page generated in 0.0683 seconds