• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioaktivní molekuly zapojené do zpracování krve u hematofágních monogeneí čeledi Diplozoidae / Bioactive molecules involved in blood processing by haematophagous monogeneans of the family Diplozoidae

Jedličková, Lucie January 2019 (has links)
Monogeneans from the family Diplozoidae (subclass Heteronchoinea) are bloodfeeding ectoparasites inhabiting gills of common carp. Digestion of blood in diplozoids is an intracellular process taking place in gut cells within lysosomal cycle in the presence of parasite's peptidases. However, information about the blood digestion comes only from ultrastructural and histochemical analyses. Therefore, I have focused in this work on biochemical and molecular characteristics of bioactive molecules which may participate in blood processing by E. nipponicum adults, especially cysteine peptidases of cathepsin L- and B- types, aspartic peptidases of cathepsin D-type, and Kunitz-type inhibitors of serine peptidases. In homogenates and excretory/secretory (E/S) products of E. nipponicum adults, an activity of cysteine peptidases of cathepsins L-type dominated, followed by an activity of cathepsin D-like aspartic peptidases and a minor cathepsin B-like activity. Inhibitors of the abovementioned peptidase types completely blocked hemoglobinolytic activity in the samples. In the transcriptome of E. nipponicum adults, ten cathepsin L-coding transcripts were found and only one cathepsin B-coding transcript. Primary structures of the encoded enzymes were bioinformatically and phylogenetically compared. Two abundant...
2

Electric DNA arrays for determination of pathogenic Bacillus cereus

Liu, Yanling January 2007 (has links)
<p>Silicon-based electric chip arrays were developed for characterization of Bacillus</p><p>cereus with respect to the capacity to produce toxins involved in food poisoning and foodborne infections. Bacteria of the B. cereus group contain different sets of four toxins encoded by eight genes. The purpose of this work was to develop a fast method for determination of the presence of these genes in colonies from primary enrichment cultures. The specific DNA detection was based on immobilization of DNA capture probes, which hybridize to specific sites on the target genes. Biotin-labeled detection probes were designed to hybridize with the target DNA adjacent to the capture probes. An extravidin - alkaline phosphatase complex was subsequently bound to the hybridized detection probes. Finally, p-aminophenyl phosphate was added as substrate for the enzyme, and the product p-aminophenol was brought in contact with the interdigitated gold electrode on the silicon chips surface. The p-aminophenol was oxidized at the anode to quinoneimine, which was then reduced back to paminophenol at the cathode. This redox recycling generates a current that was used as the DNA-chip response to the target DNA. Two versions of the assay were used. In the first version the capture probes were immobilized on magnetic beads and all</p><p>chemical reactions until and including the enzymatic reaction took place in an</p><p>eppendorf tube while the redox recycling was used to measure the amount of paminophenol produced after transfer from the tube to the silicon chip surface. In the second version a silicon chip array was used with 16 parallel electrode positions, each activated by immobilization of one type of capture probes on the gold electrodes. With this system all chemical reactions took place at the chip surface. The kinetics of cell disruption and DNA fragmentation from B. cereus by ultrasonication was determined. Maximum cell disruption was achieved within 5 min and the chip response increased in proportion to the ultrasonic time. Further ultrasonication up to 10 min resulted in further increasing current although no further cell disruption was observed. If the sonication time was extended above 10 min the signal declined. Based on analysis of the DNA size distribution by early end-point PCR and gel electrophoresis, it is suggested that the first 5 min ultrasonication increased the signal by increasing the release of target DNA molecules. Thereafter the signal was increased by fragmentation of target DNA which increases the diffusion rate and also the accessibility of the hybridization site. Finally, the DNA fragment sizes approached that of the hybridization site (51-bp) which may reduce the signal because of cleavage of the target DNA in the hybridization region. These studies were performed with the bead-based hybridization assay. The assay was highly specific to the target gene (hblC) of both B. cereus and B. thuringiensis with no response from negative control</p><p>cells of B. subtilis. The 16 positions of the silicon chip array were activated by</p><p>immobilization of all known toxin-coding genes of B. cereus and also included both a positive control and a negative control electrode positions. When these chips were exposed to ultrasonicated B. cereus, the gold electrodes were fouled by some component in DNA cell lysates. To circumvent this, the released large DNA was first extracted and then ultrasonicated again, since the extract mainly contains large molecular weight DNA. This DNA extract was applied to characterize one “diarrheal” and one “emetic” strain of B. cereus with the DNA chip arrays. The results agreed with PCR control analysis which means that these electric DNA chip arrays can be used to characterize bacterial colonies with respect to the genes coding of all known toxins of B. cereus: haemolysin (hblA, hblC, hblD), non-haemolytic enterotoxin (nheA, nheB, nheC), cytotoxin K-2 (cytK-2), and cereulide (ces). The chip assay required about 30 min after application of DNA samples. Due to the generic properties of the chips, this technique should also be applicable for characterization of the pathogenicity potential of many other organisms. Keywords: Bacillus cereus, haemolysin, non-haemolytic enterotoxin, cytotoxin K-2, cereulide, toxin-coding genes, bacterial colony, electric DNA chip, ultrasonication, DNA fragmentation.</p>
3

Electric DNA arrays for determination of pathogenic Bacillus cereus

Liu, Yanling January 2007 (has links)
Silicon-based electric chip arrays were developed for characterization of Bacillus cereus with respect to the capacity to produce toxins involved in food poisoning and foodborne infections. Bacteria of the B. cereus group contain different sets of four toxins encoded by eight genes. The purpose of this work was to develop a fast method for determination of the presence of these genes in colonies from primary enrichment cultures. The specific DNA detection was based on immobilization of DNA capture probes, which hybridize to specific sites on the target genes. Biotin-labeled detection probes were designed to hybridize with the target DNA adjacent to the capture probes. An extravidin - alkaline phosphatase complex was subsequently bound to the hybridized detection probes. Finally, p-aminophenyl phosphate was added as substrate for the enzyme, and the product p-aminophenol was brought in contact with the interdigitated gold electrode on the silicon chips surface. The p-aminophenol was oxidized at the anode to quinoneimine, which was then reduced back to paminophenol at the cathode. This redox recycling generates a current that was used as the DNA-chip response to the target DNA. Two versions of the assay were used. In the first version the capture probes were immobilized on magnetic beads and all chemical reactions until and including the enzymatic reaction took place in an eppendorf tube while the redox recycling was used to measure the amount of paminophenol produced after transfer from the tube to the silicon chip surface. In the second version a silicon chip array was used with 16 parallel electrode positions, each activated by immobilization of one type of capture probes on the gold electrodes. With this system all chemical reactions took place at the chip surface. The kinetics of cell disruption and DNA fragmentation from B. cereus by ultrasonication was determined. Maximum cell disruption was achieved within 5 min and the chip response increased in proportion to the ultrasonic time. Further ultrasonication up to 10 min resulted in further increasing current although no further cell disruption was observed. If the sonication time was extended above 10 min the signal declined. Based on analysis of the DNA size distribution by early end-point PCR and gel electrophoresis, it is suggested that the first 5 min ultrasonication increased the signal by increasing the release of target DNA molecules. Thereafter the signal was increased by fragmentation of target DNA which increases the diffusion rate and also the accessibility of the hybridization site. Finally, the DNA fragment sizes approached that of the hybridization site (51-bp) which may reduce the signal because of cleavage of the target DNA in the hybridization region. These studies were performed with the bead-based hybridization assay. The assay was highly specific to the target gene (hblC) of both B. cereus and B. thuringiensis with no response from negative control cells of B. subtilis. The 16 positions of the silicon chip array were activated by immobilization of all known toxin-coding genes of B. cereus and also included both a positive control and a negative control electrode positions. When these chips were exposed to ultrasonicated B. cereus, the gold electrodes were fouled by some component in DNA cell lysates. To circumvent this, the released large DNA was first extracted and then ultrasonicated again, since the extract mainly contains large molecular weight DNA. This DNA extract was applied to characterize one “diarrheal” and one “emetic” strain of B. cereus with the DNA chip arrays. The results agreed with PCR control analysis which means that these electric DNA chip arrays can be used to characterize bacterial colonies with respect to the genes coding of all known toxins of B. cereus: haemolysin (hblA, hblC, hblD), non-haemolytic enterotoxin (nheA, nheB, nheC), cytotoxin K-2 (cytK-2), and cereulide (ces). The chip assay required about 30 min after application of DNA samples. Due to the generic properties of the chips, this technique should also be applicable for characterization of the pathogenicity potential of many other organisms. Keywords: Bacillus cereus, haemolysin, non-haemolytic enterotoxin, cytotoxin K-2, cereulide, toxin-coding genes, bacterial colony, electric DNA chip, ultrasonication, DNA fragmentation. / QC 20101111
4

Internalisation des leucotoxines de S. aureus dans les cellules cibles et conséquences cellulaires associées / Internalisation of S. aureus leukotoxins in target cells and associated cellular consequences

Zimmermann-Meisse, Gaëlle 25 November 2016 (has links)
S. aureus sécrète de nombreux facteurs de virulence qui lui permettent de lutter efficacement contre le système immunitaire, afin de favoriser la dissémination de la bactérie dans l’organisme hôte. Parmi ces molécules, les leucotoxines ciblent principalement les cellules myéloïdes comme les neutrophiles, les macrophages ou encore les monocytes, et sont formées par deux sous-unités : une de classe S et une de classe F. La Leucodine de Panton et Valentine (LPV) et l’Hémolysine γ HlgC/HlgB sont deux leucotoxines dont le composant de classe S se fixe sur l’un des récepteurs du système du complément, le C5aR. Naturellement activé par l’anaphylatoxine C5a, le C5aR voit son activité modifiée lors d’une interaction avec la LPV ou HlgC/HlgB, tout du moins pour la libération du calcium intracellulaire. Ces deux leucotoxines, à l’instar du C5a, sont internalisées dans le neutrophile humain et utilisent le transport rétrograde pour atteindre l’appareil de Golgi. Elles peuvent rester dans la cellule jusqu’à 3h sans susciter la mort pour le neutrophile. Plus tard, à 6h, seule la LPV induit de l’apoptose et de la NETose. / S. aureus secretes many virulent factors which allow to efficiently fight the immune system, in a way to promote the bacterial spreading inside the host. Among these molecules, the leukotoxins target myeloid cells such as neutrophils, macrophages and monocytes, and are composed of two subunits: one of class S and one of class F. Panton and Valentine Leukocidin (PVL) and γ-Haemolysin HlgC/HlgB are two leukotoxins whose S-component binds to the C5aR, one of the complement system receptors. Naturally activated by the C5a anaphylatoxin, the activity of the C5aR is modified by the PVL and HlgC/HlgB interaction, for the intracellular calcium release. These two leukotoxins, as C5a, are internalised inside the human neutrophils and use the retrograde transport to reach the Golgi apparatus. These can rest inside the cells until 3h without neutrophil dead. Later, at 6h, only PVL induces apoptosis and NETosis.
5

Action et contrôle des leucotoxines de Staphylococcus aureus sur les cellules cibles / Effect and control of Staphylococcus aureus leukotoxins on target cells

Tawk, Mira 07 July 2014 (has links)
La γ-hémolysine HlgC/HlgB et la leucocidine de Panton et Valentine (LPV) sont deux toxines formant des pores de la famille des leucotoxines bipartites (formées de deux sous-unités de classe S et F) sécrétées par S. aureus qui ciblent directement les polynucléaires neutrophiles humains (hPNNs) et qui augmentent le pouvoir pathogène de la bactérie. Ces leucotoxines sont également capables de cibler d’autres types cellulaires comme les neurones en grain du cervelet de rat et les DRG. D’abord, le composé de classe S de ces leucotoxines se fixe à un récepteur membranaire, le C5aR. Des substitutions en Alanine par mutagénèse dirigée ont permis la caractérisation d’un cluster d’acides aminés essentiels pour la fixation de LukS-PV à C5aR, localisé sur 2 boucles du domaine « Rim ». Puis, suite à la fixation de la sous-unité de classe F, HlgC/HlgB et la LPV semblent être internalisées, permettant une augmentation de la [Ca2+]i. Malgré les grandes similarités entre ces deux leucotoxines les sous-unités de classe F permettent à chaque leucotoxine d’activer des voies calciques différentes. Des dérivés du para-sulfonate-calix[4]arène ont un effet inhibiteur de ces toxines et pourraient montrer un potentiel à être utilisés comme auxiliaires aux antibiothérapies. / The γ-hemolysin HlgC/HlgB and the Panton and Valentine leukocidin (PVL) are two pore-forming toxins of the family of bicomponent leukotoxins secreted by S. aureus that directly target human neutrophils (hPNNs) and increase the pathogenicity of the bacteria. These leukotoxins also are capable of targeting other cell types such as rat cerebellar granular neurons and DRG. First, the compound of the class S binds to a membrane receptor, C5aR. Alanine-scanning mutagenesis allowed the characterization of a cluster of amino acids localized on two loops of the “Rim” domain essential for LukS-PV binding to C5aR. Then, after the class F subunit binding, HlgC/HlgB and PVL appear to be internalized, allowing an increase in [Ca2+]i. Despite the similarities between these two subunits, the class F component allows each leukotoxin to activate different pathways. Derivatives of para-sulfonato-calix[4]arene have an inhibitory effect on these toxins and may offer a potential to be used as auxiliary to antibiotherapy.

Page generated in 0.0447 seconds