• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • Tagged with
  • 18
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aktivierung und Reprimierung der Gasvesikelbildung in Haloferax mediterranei

Zimmermann, Peter. Unknown Date (has links)
Techn. Universiẗat, Diss., 2003--Darmstadt.
2

Estudio de la halocina H6 producida por Haloferax gibbonsii

Torreblanca Calvo, Marina 16 October 1989 (has links)
No description available.
3

Nmr Structure and Relaxation Studies of Dhfr from Haloferax Volcanii at High Salt

Binbuga, Bulent 11 August 2007 (has links)
The studies of enzymes from extreme sources have gained significance due to their increasing potential applications. The proteins from halophiles (salt loving) have adapted to challenging environmental conditions and require salt for their structure and function. How halophilic proteins adapt to a hypersaline environment is still an intriguing question. It is important to mimic the environmental conditions of the sample under investigation with experimental techniques. In this study, structure and dynamic features of a halophilic enzyme have been investigated under high salt conditions. The acquisition of NMR data on high salt samples has always been problematic. We have devised a simple and elegant approach for obtaining NMR data for a protein in a high salt buffer that allows for virtually complete 1H, 13C, and 15N assignments. These data were then used to calculate the NMR derived structure of Haloferax volcanii dihydrofolate reductase in 3.5 M NaCl. Structure calculations showed that this protein folds in a similar manner as investigated in the crystal structures of Haloferax volcanii dihydrofolate reductase and Escherichia coli dihydrofolate reductase. To understand the effect of salt on flexibility as well as activity, NMR relaxation studies at 3.5 M and 1.0 M salt concentration were carried out. NMR dynamics of this enzyme revealed that the loss of activity as the salt concentration is lowered is due to lose in the inherent flexibility across the backbone, particularly in the catalytic loops.
4

Der Einfluss von Anaerobie und von Glucose auf die Gasvesikelbildung in halophilen Archaea

Hechler, Torsten. Unknown Date (has links)
Darmstadt, Techn. Universiẗat, Diss., 2007. / Dateien im PDF-Format.
5

NMR Structure Calculation of the Halophilic Binary hvDHFR1:folate Complex

Boroujerdi, Arezue Fatemeh Bekrai 03 May 2008 (has links)
Dihydrofolate reductase is an enzyme that catalyzes the reaction of dihydrofolate to tetrahydrofolate with nicotinamide adenine dinucleotide phosphate. Haloferax volcanii is a “salt-loving” microorganism found in the Dead Sea. Such microorganisms have adapted to their extreme environments and now require extremely high salt concentrations to survive. The study of dihydrofolate reductase from Haloferax volcanii with the substrate folate bound, which is the focus of the work presented in this dissertation, offers further understanding of this adaptation. The effect that high salt concentration has on this enzyme is not fully understood; however, this dissertation includes the investigation of the structure of a halophilic enzyme with substrate bound, providing new information in this uncertain field of research. In particular, the results shown here (along with future studies) can be applied towards the question of how an extremely salty environment affects enzyme function, stability, solubility, and flexibility.Triple resonance nuclear magnetic resonance spectra of the 17.9 kDa enzyme with bound substrate have been interpreted. 1H, 13C, and 15N backbone and side chain chemical shifts were specifically assigned to the amino acids that make up the enzyme. These assignments revealed overall similarities to the chemical shifts of the apo enzyme, with some exceptions. These exceptions are of particular interest as they are due to the binding of folate. Secondary structural analysis of the nuclear magnetic resonance data based on the chemical shift index showed that the binary complex has similar secondary structural features to the folate-bound dihydrofolate reductase from mesophilic Escherichia coli.The structure of dihydrofolate reductase from Haloferax volcanii with folate bound has been investigated using Crystallography and nuclear magnetic resonance system structure calculations, suggesting an overall similarity to the X-ray crystallography and nuclear magnetic resonance structures of apo dihydrofolate reductase from Haloferax volcanii. The results of the structure calculation and secondary structural analysis of the chemical shift assignments suggest secondary structural features including a beta-sheet in the core of the enzyme composed of 8 beta-strands, surrounded by 4 alpha-helices, and 4 major loops. The structure of the binary complex was compared to its mesophilic counterpart, the folate-bound dihydrofolate reductase from Escherichia coli, which was investigated by X-ray crystallography. The results of the work described in this dissertation do not agree with loop structure of the mesophilic complex.
6

Dynamique de la réplication chez l'archée Haloferax volcanii / Replication dynamics in the archaeon Haloferax volcanii

Collien, Yoann 14 October 2019 (has links)
Haloferax volcanii est une archée appartenant au phylum euryarchaeota et à la classe des Halobacteriales. Les mécanismes liés à la réplication et à la réparation chez les archées sont très similaires à ceux rencontrés chez les eucaryotes, faisant d’H. volcanii un des organismes modèle pour l’étude de la réplication et de la biologie des archées, notamment car de nombreux outils génétiques sont disponibles chez cet organisme. De plus, H. volcanii possède la particularité de pouvoir avoir toutes ses origines de réplication supprimées, soulevant beaucoup de questions sur les mécanismes impliqués. Plusieurs hypothèses ont été émises sur la façon dont cette souche initie sa réplication, basées soit sur la dérivation des mécanismes liés à la réparation de l’ADN, soit sur un mécanisme d’initiation de la réplication indépendant des origines. Afin d’étudier ces mécanismes liés à la réplication, j’ai construit une souche d’H. volcanii capable d’incorporer des analogues de la thymidine dans l’ADN lors de sa synthèse grâce à la délétion de gènes impliqués dans la voie de biosynthèse de la thymidine. Des temps de cultures courts de la souche en présence d’un analogue permet son incorporation au niveau des zones actives de réplication pour marquer spécifiquement l’ADN néosynthétisé. L’immunodétection de l’analogue incorporé à l’ADN, en travaillant en cellule entière avec un microscope à fluorescence, permet la localisation de l’ADN néosynthétisé, reflétant ainsi les régions où la réplication est active. Ces analyses révèlent majoritairement 2 à 3 régions de réplication actives dans des cellules en prolifération, sans localisation particulière. Ces régions ont déjà été observées en étudiant la localisation d’une protéine clé de la réplication (RPA2) fusionnée à la protéine verte fluorescente GFP, confirmant sa localisation aux zones actives de réplication. Une étonnante variabilité observée d’une cellule à l’autre et suggère une initiation probabiliste de la réplication. Il est également étonnant de n’observer qu’aussi peu de zones actives de réplication, comparé au fort taux de polyploïdie de cette souche. Se pose alors la question de ce à quoi correspondent ces zones de réplication. Pour cela, j’ai développé chez H. volcanii la technique de peignage moléculaire permettant d’isoler des molécules individuelles d’ADN et révéler spécifiquement les analogues incorporés pour pouvoir déterminer le nombre de copies du chromosome qui sont actives lors de la réplication, ainsi que le nombre d’origines actives sur chacune des copies. J’ai également développé une technique de Time-lapse dans le but de suivre ces régions au cours du temps en observant les divisions cellulaires directement sous le microscope. / Haloferax volcanii is an archaea belonging to the phylum euryarchaeota and the class Halobacteriales. The mechanisms related to replication and repair in archaea are very similar to those found in eukaryotes, making H. volcanii a relevant model organisms for the study of replication and archaeal biology, especially since many genetic tools are available. Interestingly, all replication origins can be removed from the chromosome of H. volcanii, raising many questions about the mechanisms involved. Several hypotheses have been proposed on how this strain initiates its replication, either relying on recombination-dependent replication initiation or an origin-independent mechanism. In order to study these replication-related mechanisms, I have constructed a strain of H. volcanii able to incorporate thymidine analogues into DNA during its synthesis by deleting genes involved in the thymidine biosynthesis pathway. A short-time cultures of the strain in the presence of an analogue allows its incorporation in nascent DNA. By immunodetection of the analog coupled to fluorescence microscopy observation of whole cells, it is possible to investigate the localization of neosynthesized DNA,which reflect the regions where replication is active. These analyses revealed mainly 2 to 3 active replication regions per cell, without any particular location. These regions had already been observed by studying the localization of a key replication protein (RPA2) fused to the fluorescent green protein GFP, confirming its location in active replication areas. A surprising variability in the number of replication foci from one cell to another was observed, suggesting a probabilistic initiation of replication. It is also surprising to observe so few active replication areas compared to the high polyploidy of this strain. This raises the question of what these replication areas correspond to. For further understanding, I developed for H. volcanii molecular combing, to isolate individual DNA molecules and specifically reveal incorporated analogues to determine the number of copies of the chromosome that are being replicated, as well as the number of active origins on each of the copies. I have also developed time-lapse approach to track these regions over time by monitoring cell proliferation directly under the microscope.
7

Dynamique cellulaire des protéines de la réplication chez l'archée halophile Haloferax volcanii / Cellular dynamics of the DNA replication proteins in the halophilic archaeon Haloferax volcanii

Delpech, Floriane 17 November 2016 (has links)
Ce travail de thèse porte sur l’étude de la réplication chez les archées, qui constituent le troisième domaine du vivant avec les bactéries et les eucaryotes. L’organisme modèle que nous avons utilisé est l'archée halophile Haloferax volcanii car les outils génétiques disponibles permettent d’exprimer des protéines fusionnées à la Protéine Fluorescente Verte (GFP) dans cet organisme mésophile et aérobe et ainsi de localiser les protéines d’intérêt dans des cellules vivantes. Nous nous sommes ainsi intéressés à la localisation cellulaire de quatre protéines de la réplication qui ont été fusionnées à la GFP et exprimées sous contrôle de leur propre promoteur : (i) la protéine ‘Flap Endonuclease 1’ (FEN1), qui intervient dans la maturation des fragments d’Okazaki, (ii) la protéine ‘Origin Recognition Complex’ (ORC1) impliquée dans la reconnaissance des origines de réplication, (iii) la protéine ‘Proliferating Cellular Nuclear Antigen’ (PCNA), anneau de processivité des ADN polymérases réplicatives, et (iv) la protéine de fixation à l’ADN simple-brin ‘Replication Protein A’ (RPA2) essentielle à la réplication chez H. volcanii. Seule la protéine PCNA n’a pu être exprimée en fusion avec la GFP, suggérant que la protéine fusion n’est pas fonctionnelle. GFP::Orc1 et GFP::Fen1 ont été exprimées dans la cellule mais ne présentent pas de localisation spécifique reflétant un rôle de ces protéines dans la réplication de l’ADN. En revanche des foyers de fluorescence de la protéine fusion GFP::Rpa2 ont été observés, dont le nombre augmente significativement dans des cellules exposées à l’aphidicoline, drogue inhibant la synthèse de l’ADN et induisant ainsi un stress réplicatif. Cependant une localisation différente de la protéine GFP::Rpa2 a été observée lorsque les cellules sont exposés à la phléomycine, qui induit notamment des cassures double-brin de l‘ADN. Dans ces cellules, GFP::Rpa2 forme un foyer de fluorescence massif qui colocalise avec l’ADN compacté dans la grande majorité des cellules observées. Nos résultats suggèrent donc que la localisation spécifique observée pour GFP::Rpa2 reflète son rôle dans la réparation de l’ADN et/ou le redémarrage des fourche de réplication arrêtées. / The aim of this thesis project was to improve our understanding of DNA replication in archaea, the third domain of life with bacteria and eukarya. The model organism chosen for these studies is the halophilic archaea Haloferax volcanii, a mesophilic aerobe for which genetics tools allow studying in living cells the localization of proteins fused to the Green Fluorescent protein (GFP). Four proteins involved in DNA replication were fused to the GFP and expressed under the control of their own promoter: (i) the ‘Flap Endonuclease 1’ (FEN1), involved in Okazaki fragments maturation, (ii) the ‘Origin Recognition Complex’ (ORC1), involved in DNA replication origin recognition, (iii) the ‘Proliferating Cellular Nuclear Antigen’ (PCNA), processivity factor of replicative DNA polymerases, and (iv) the ‘Replication Protein A’ (RPA2), single-stranded DNA binding protein essential for DNA replication in H. volcanii. Only the PCNA fusion to the GFP was not successful, suggesting that the GFP hinders essential roles of PCNA in DNA replication. Fen1 and Orc1 were successfully fused to the GFP and expressed in living cells, but specific localization in cells related to growth phase, reflecting different replication dynamics, were not observed. In contrast, we could observed fluorescent foci formed by the fully functional GFP::Rpa2 protein that actively responded to DNA damage in H. volcanii cells. The number of these fluorescent foci per cell was constant during cell growth but it significantly increased in cells exposed to aphidicoline, which inhibits DNA synthesis during replication. When cells were treated with phleomycine, a DNA damaging agent mainly causing double-strand breaks, formation of a massive fluorescent focus coinciding with DNA compaction was observed. Our results suggest that the specific cellular localization of GFP::Rpa2 observed reflects Rpa2 roles in DNA repair and/or DNA replication fork restart.
8

Ciclo del glioxilato en el arquea halófilo Haloferax volcanii: análisis bioquímico, filogenético y transcripcional

Serrano Gomicia, Juan Antonio 09 July 2001 (has links)
CICYT (PB95-0695)
9

Glutamato deshidrogenasa NADP+ dependiente del Archaea Haloferax mediterranei: estudios cinéticos y características moleculares

Ferrer Casanova, Juan 22 September 1995 (has links)
El presente trabajo ha sido subencionado en parte por los proyectos: BI093-0660-CO4-03 CICYT y GV-1170793 Generalitat Valenciana.
10

Fisiología de la asimilación de nitrógeno en Haloferax mediterranei: purificación y caracterización de nitrato y nitrito reductasas asimilativas

Martínez-Espinosa, Rosa María 18 July 2003 (has links)
No description available.

Page generated in 0.0577 seconds