• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 292
  • 51
  • 49
  • 28
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 530
  • 207
  • 116
  • 87
  • 76
  • 68
  • 52
  • 46
  • 37
  • 36
  • 35
  • 35
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Nanoscale Quantum Dynamics and Electrostatic Coupling

Weichselbaum, Andreas 29 July 2004 (has links)
No description available.
292

Numerical investigation of chaotic dynamics in multidimensional transition states

Allahem, Ali Ibraheem January 2014 (has links)
Many chemical reactions can be described as the crossing of an energetic barrier. This process is mediated by an invariant object in phase space. One can construct a normally hyperbolic invariant manifold (NHIM) of the reactive dynamical system which is an invariant sphere that can be considered as the geometric representation of the transition state itself. The NHIM has invariant cylinders (reaction channels) attached to it. This invariant geometric structure survives as long as the invariant sphere is normally hyperbolic. We applied this theory to the hydrogen exchange reaction in three degrees of freedom in order to figure out the reason of the transition state theory (TST) failure. Energies high above the reaction threshold, the dynamics within the transition state becomes partially chaotic. We have found that the invariant sphere first ceases to be normally hyperbolic at fairly low energies. Surprisingly normal hyperbolicity is then restored and the invariant sphere remains normally hyperbolic even at very high energies. This observation shows two different energy values for the breakdown of the TST and the breakdown of the NHIM. This leads to seek another phase space object that is related to the breakdown of the TST. Using theory of the dividing surface including reactive islands (RIs), we can investigate such an object. We found out that the first nonreactive trajectory has been found at the same energy values for both collinear and full systems, and coincides with the first bifurcation of periodic orbit dividing surface (PODS) at the collinear configuration. The bifurcation creates the unstable periodic orbit (UPO). Indeed, the new PODS (UPO) is the reason for the TST failure. The manifolds (stable and centre-stable) of the UPO clarify these expectations by intersecting the dividing surface at the boundary of the reactive island (on the collinear and the three (full) systems, respectively).
293

Relaxation in harmonic oscillator systems and wave propagation in negative index materials

Chimonidou, Antonia 02 June 2010 (has links)
This dissertation is divided up into two parts, each examining a distinct theme. The rst part of our work concerns itself with open quantum systems and the relaxation phenomena arising from the repeated application of an interaction Hamiltonian on systems composed of quantum harmonic oscillators. For the second part of our work, we shift gears and investigate the wave propagation in left-handed media, or materials with simultaneously negative electric permeability and magnetic permeability . Each of these two parts is complete within its own context. In the rst part of this dissertation, we introduce a relaxation-generating model which we use to study the process by which quantum correlations are created when an interaction Hamiltonian is repeatedly applied to bipartite harmonic oscillator systems for some characteristic time interval . The two important time scales which enter our results are discussed in detail. We show that the relaxation time obtained by the application of this repeated interaction scheme is proportional to both the strength of interaction and to the characteristic time interval . Through discussing the implications of our model, we show that, for the case where the oscillator frequencies are equal, the initial Maxwell-Boltzmann distributions of the uncoupled parts evolve to a new Maxwell-Boltzmann distribution through a series of transient Maxwell-Boltzmann distributions, or quasi-stationary, non-equilibrium states. We further analyze the case in which the two oscillator frequencies are unequal and show how the application of the same model leads to a non-thermal steady state. The calculations are exact and the results are obtained through an iterative process, without using perturbation theory. In the second part of this dissertation, we examine the response of a plane wave incident on a at surface of a left-handed material, a medium characterized by simultaneously negative electric permittivity and magnetic permeability . We do this by solving Maxwell's equations explicitly. In the literature up to date, it has been assumed that negative refractive materials are necessarily frequency dispersive. We propose an alternative to this assumption by suggesting that the requirement of positive energy density can be relaxed, and discuss the implications of such a proposal. More speci cally, we show that once negative energy solutions are accepted, the requirement for frequency dispersion is no longer needed. We further argue that, for the purposes of discussing left-handed materials, the use of group velocity as the physically signi cant quantity is misleading, and suggest that any discussion involving it should be carefully reconsidered. / text
294

Supereulerian graphs, Hamiltonicity of graphes and several extremal problems in graphs

Yang, Weihua 27 September 2013 (has links) (PDF)
In this thesis, we focus on the following topics: supereulerian graphs, hamiltonian line graphs, fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees, and several extremal problems on the (minimum and/or maximum) size of graphs under a given graph property. The thesis includes six chapters. The first one is to introduce definitions and summary the main results of the thesis, and in the last chapter we introduce the furture research of the thesis. The main studies in Chapters 2 - 5 are as follows. In Chapter 2, we explore conditions for a graph to be supereulerian.In Section 1 of Chapter 2, we characterize the graphs with minimum degree at least 2 and matching number at most 3. By using the characterization, we strengthen the result in [93] and we also address a conjecture in the paper.In Section 2 of Chapter 2, we prove that if $d(x)+d(y)\geq n-1-p(n)$ for any edge $xy\in E(G)$, then $G$ is collapsible except for several special graphs, where $p(n)=0$ for $n$ even and $p(n)=1$ for $n$ odd. As a corollary, a characterization for graphs satisfying $d(x)+d(y)\geq n-1-p(n)$ for any edge $xy\in E(G)$ to be supereulerian is obtained. This result extends the result in [21].In Section 3 of Chapter 2, we focus on a conjecture posed by Chen and Lai [Conjecture~8.6 of [33]] that every 3-edge connected and essentially 6-edge connected graph is collapsible. We find a kind of sufficient conditions for a 3-edge connected graph to be collapsible.In Chapter 3, we mainly consider the hamiltonicity of 3-connected line graphs.In the first section of Chapter 3, we give several conditions for a line graph to be hamiltonian, especially we show that every 3-connected, essentially 11-connected line graph is hamilton- connected which strengthens the result in [91].In the second section of Chapter 3, we show that every 3-connected, essentially 10-connected line graph is hamiltonian-connected.In the third section of Chapter 3, we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is hamiltonian. Moreover, if $G$ has 10 vertices of degree 3 and its line graph is not hamiltonian, then $G$ can be contractible to the Petersen graph.In Chapter 4, we consider edge fault-tolerant hamiltonicity of Cayley graphs generated by transposition trees. We first show that for any $F\subseteq E(Cay(B:S_{n}))$, if $|F|\leq n-3$ and $n\geq4$, then there exists a hamiltonian path in $Cay(B:S_{n})-F$ between every pair of vertices which are in different partite sets. Furthermore, we strengthen the above result in the second section by showing that $Cay(S_n,B)-F$ is bipancyclic if $Cay(S_n,B)$ is not a star graph, $n\geq4$ and $|F|\leq n-3$.In Chapter 5, we consider several extremal problems on the size of graphs.In Section 1 of Chapter 5, we bounds the size of the subgraph induced by $m$ vertices of hypercubes. We show that a subgraph induced by $m$ (denote $m$ by $\sum\limits_{i=0}^ {s}2^{t_i}$, $t_0=[\log_2m]$ and $t_i= [\log_2({m-\sum\limits_{r=0}^{i-1}2 ^{t_r}})]$ for $i\geq1$) vertices of an $n$-cube (hypercube) has at most $\sum\limits_{i=0}^{s}t_i2^{t_i-1} +\sum\limits_{i=0}^{s} i\cdot2^{t_i}$ edges. As its applications, we determine the $m$-extra edge-connectivity of hypercubes for $m\leq2^{[\frac{n}2]}$ and $g$-extra edge-connectivity of the folded hypercube for $g\leq n$.In Section 2 of Chapter 5, we partially study the minimum size of graphs with a given minimum degree and a given edge degree. As an application, we characterize some kinds of minimumrestricted edge connected graphs.In Section 3 of Chapter 5, we consider the minimum size of graphs satisfying Ore-condition.
295

A Quasilocal Hamiltonian for Gravity with Classical and Quantum Applications

Booth, Ivan January 2000 (has links)
I modify the quasilocal energy formalism of Brown and York into a purely Hamiltonian form. As part of the reformulation, I remove their restriction that the time evolution of the boundary of the spacetime be orthogonal to the leaves of the time foliation. Thus the new formulation allows an arbitrary evolution of the boundary which physically corresponds to allowing general motions of the set of observers making up that boundary. I calculate the rate of change of the quasilocal energy in such situations, show how it transforms with respect to boosts of the boundaries, and use the Lanczos-Israel thin shell formalism to reformulate it from an operational point of view. These steps are performed both for pure gravity and gravity with attendant matter fields. I then apply the formalism to characterize naked black holes and study their properties, investigate gravitational tidal heating, and combine it with the path integral formulation of quantum gravity to analyze the creation of pairs of charged and rotating black holes. I show that one must use complex instantons to study this process though the probabilities of creation remain real and consistent with the view that the entropy of a black hole is the logarithm of the number of its quantum states.
296

Quantum magnets with strong spin-orbit interaction probed via neutron and X-ray scattering

Biffin, Alun M. January 2014 (has links)
This thesis presents details of x-ray and neutron scattering experiments used to probe quantum magnets with strong spin-orbit interaction. The first of these systems are the three-dimensional iridate compounds, in which the three-fold co-ordination of IrO<sub>6</sub> octahedra has been theoretically hypothesized to stabilize anisotropic exchange between Ir<sup>4+</sup> ions. This novel interaction between these spin-orbital entangled, J<sub>eff</sub>=1/2 moments is described by a Hamiltonian first proposed by Kitaev, and would be the first physical realization of this Hamiltonian in a condensed matter system. This thesis details the determination of the structure of a new polytype within these compounds, the 'stripyhoneycomb' &gamma;-Li<sub>2</sub>IrO<sub>3</sub>. Furthermore, through resonant magnetic x-ray diffraction experiments on single crystals of &beta;-Li<sub>2</sub>IrO<sub>3</sub> and &gamma;-Li<sub>2</sub>IrO<sub>3</sub>, an incommensurate, non-coplanar structure with counter-rotating moments is found. The counter-rotating moment structure is a rather counter-intuitive result, as it is not stabilizied by Heisenberg exchange between magnetic sites, however, the Kitaev exchange naturally accounts for this feature. As such, these experiments reveal, for the first time, systems which exhibit dominant Kitaev interactions. The ordering wavevector of both &beta;- and &gamma;-Li<sub>2</sub>IrO<sub>3</sub> polytypes are found to be identical, suggesting that the same magnetic interactions are responsible for stabilizing magnetic order in both materials, despite their different lattice topologies. Following this, the spinel FeSc<sub>2</sub>S<sub>4</sub> is considered. Here, despite the presence of strong exchange between Fe<sup>2+,/sup>, and the fact that these ions sit in a Jahn-Teller active environment, the system does not order in the spin or orbital degrees of freedom. A 'spin-orbital singlet' has been theoretically proposed to describe the groundstate of this system, and here inelastic neutron scattering (INS) is used to probe the resulting triplon excitations. This allows determination of microscopic parameters in the single ion and exchange Hamiltonians, and moreover experiments in external magnetic field reveal the true spin-and-orbital nature of these triplon excitations. Finally, Ba<sub>3</sub>CoSb<sub>2</sub>O<sub>9</sub>, a physical realization of the canonical triangular antiferromagnet model is explored with INS and the high energy excitations from the 120 degree magnetic structure are found to display significant differences from those calculated by linear spin wave theory, suggesting the presence of quantum dynamics not captured in the 1/S linear spin wave expansion.
297

[en] A PROJECTOR OPERATOR FORMALISM TO SOLVE THE ANDERSON HAMILTONIAN / [pt] UM FORMALISMO DE OPERADORES DE PROJEÇÃO PARA RESOLVER O HAMILTONIANO DE ANDERSON

VICTOR LOPES DA SILVA 25 July 2014 (has links)
[pt] Nesta dissertação propomos um formalismo de operadores de projeção para obter a energia do estado fundamental do Hamiltoniano da Impureza de Anderson com repulsão Coulombiana U infinita. Este formalismo consiste em projetar o espaço de Hilbert em um subespaço de uma unica função correspondente ao estado fundamental do mar de Fermi, onde uma versão renormalizada do Hamiltoniano opera. A energia do estado fundamental pode ser obtida através de um processo autoconsistente. conhecendo a energia e possível calcular as propriedades fundamentais do sistema como a magnetização em função do campo magnético externo, a susceptibilidade magnética, a dependência da ocupação eletrônica como função da energia local da impureza e a temperatura Kondo, a qual caracteriza o comportamento universal do problema Kondo. / [en] In this dissertation we propose a projector operator formalism to obtain the ground state energy of the Impurity Anderson Hamiltonian with innite Coulomb repulsion U. This formalism consists in projecting the Hilbert space into a sub-space of one function corresponding to the ground state of the free Fermi sea where a renormalized version of the Hamiltonian operates. The ground state energy can be obtained through a self-consistent process. From the knowledge of the energy, it is possible to calculate the fundamental properties of the system as it is the magnetization as a function of an external magnetic field, the magnetic susceptibility, the dependence of the electronic occupation as a function of the local energy of the impurity and the Kondo temperature, which characterizes the universal behavior of a Kondo problem.
298

Transporte caótico causado por ondas de deriva / Chaotic Transport Driven by Drift Waves

Suigh, Rafael Oliveira 07 December 2010 (has links)
Um dos problemas enfrentados pelos cientistas para o confinamento de plasma em Tokamaks, para se obter fusão termonuclear controlada, é o transporte radial de partículas pela borda do plasma. Nessa dissertação, estudamos o transporte através de um modelo que relaciona as flutuações eletrostáticas na borda do plasma às ondas de deriva. Essas ondas criam no plasma regiões de fluxo convectivo, formando ilhas que são, eventualmente, separadas por barreiras. Para apenas uma onda, o sistema é integrável e todas as trajetórias do plano de fase são curvas invariantes que, se não existirem barreiras, estão em ilhas divididas por separatrizes. Foi verificado que, quando uma segunda onda com velocidade de fase diferente da primeira é utilizada, o sistema não é mais integrável e a região anteriormente ocupada pelas separatrizes torna-se caótica. Com a quebra de separatrizes ocorre o transporte caótico de partículas. Quando uma separatriz é quebrada, surge em seu lugar uma estrutura que ainda preserva algumas características da separatriz, mas se modifica no espaço de fases ao longo do tempo. Essa estrutura é conhecida como Estrutura Lagrangiana Coerente (ELC). Nessa dissertação verificamos que as ELCs, por um lado, funcionam como barreiras de transporte, pois nenhuma trajetória consegue atravessa-la e, por outro lado, criam regiões no espaço de fases onde o transporte é alto, pois trajetórias próximas a elas tendem a ser aceleradas. Uma das principais contribuições obtidas ao se estudar ELCs no problema de duas ondas de deriva, aplicado ao confinamento de plasmas em Tokamaks, é a possibilidade de se prever a existência de ilhas, que funcionem como barreiras de transporte, no plano de fases que, por sua vez, são um importante mecanismo de aprisionamento de partículas. / One of the problems facing scientists in the confinement of plasma in tokamaks, to obtain controlled thermonuclear fusion, is the radial transport of particles at the plasma edge. In this dissertation, we study particle transport through a model that relates the electrostatic fluctuations at the edge of the plasma with drift waves. These waves create regions inside the plasma with convective flow, forming islands that are eventually separated by barriers. For one wave, the system is integrable and all the trajectories of phase space are invariant curves that are divided by separatrices. It was found that when a second wave with phase velocity different from the first is used, the system is no longer integrable and the region previously occupied by the separatrix becomes chaotic. With the destruction of the separatrix the transport of particles is chaotic. When a separatrix is broken, appears in its place a structure that preserves some features of the separatrix, but it is changing in phase space over time. This structure is known as Lagrangian Coherent Structure (LCS). In this dissertation we found that the LCSs, on the one hand, act as transport barriers, since no trajectory can cross it and, moreover, creates regions in phase space where particle transport is high, because trajectories close to them tend to be accelerated. One of the main contributions obtained by studying LCSs in the problem of two drift waves, applied to the confinement of plasma in tokamaks, is the ability to predict the existence of islands, which act as transport barriers, which are an important mechanism of trapping particles.
299

Estruturas coerentes no transporte caótico induzido por ondas de deriva / Coherent structures in the chaotic transport induced by drift waves

Suigh, Rafael Oliveira 16 February 2016 (has links)
Nesta tese foi estudado o transporte de partículas na borda do plasma confinado magneticamente em tokamaks a partir de um modelo para ondas de deriva proveniente de flutuaçõoes eletrostáticas geradas pela não uniformidade do plasma. Para investigar esse problema, consideramos o modelo com duas ondas de deriva, que possui uma complexa dinâmica não linear onde podemos encontrar tanto transporte anômalo quanto transporte difusivo. Para a encontras no plano de fases as Estruturas Lagrangianas Coerentes (ELCs) e os jatos, foram confeccionados mapas de Poincaré, diagramas de expoente de Lyapunov a tempo finito, diagramas de deslocamento quadrático, diagramas de autocorrelação da velocidade e o diagrama de retorno. Para avaliar o impacto dessas ELCs no transporte de partículas foram analisados a série temporal do desvio padrão médio, da dispersão relativa e dos saltos dentro do mapa de Poincar´e e também foram confeccionados histogramas com a distribuição desses saltos. Foi encontrado que, com duas ondas de deriva e para uma determinada combinação de parâmetros, surgem correntes de jato, que persistem por longos períodos, imersas na região caótica. Verificamos que, assim como nas ilhas, a região interna às correntes de jato são inacessíveis às ELCs. Também foi encontrado que, quando existe uma corrente de jato, o transporte observado na região caótica não é simétrico com uma pequena deriva na direção contraria ao jato. Esse fenômeno observado ocorre em contrapartida ao caso típico de sistemas com mistura em que as ELCs tem acesso a todo o plano de fase e o transporte é difusivo. / In this thesis we studied the particle transport in the edge of magnetically confined plasma in tokamaks using a model of drift waves due to electrostatic fluctuations generated by the non-uniformity of the plasma. To investigate this issue, we consider the model with two drift waves, which has a complex nonlinear dynamics where we can find both anomalous and diffusive transport. To find the Lagrangian Coherent Structures (LCSs) and the jets, we used Poincaré maps, Finite time Lyapunov exponent diagrams, quadratic displacement diagrams, autocorrelation velocity diagrams and return displacement diagram. To evaluate the impact of LCSs in the transport of particles, we analyzed the time series of both average standard deviation and relative dispertion and also histograms of the distribution of these jumps. It was found that, with two drift waves and for a given combination of parameters, a jet streams appear in the phase space and persist for long periods of time immersed in the chaotic region. We found that, as well as on the islands, the inner region of the jet streams are inaccessible to LCSs. It was also found that when there is a jet stream, the transport observed in the chaotic region is not symmetrical and have a small drift in the opposite direction to the jet. This phenomenon is observed in contrast to the typical case of systems with mixing in wich the LCSs have access to all the phase space and the trasnport is diffusive.
300

Formalismo de Hamilton-Jacobi para sistemas singulares /

Teixeira, Randall Guedes. January 1996 (has links)
Orientador: Bruto Max Pimentel Escobar / Resumo: Neste trabalho apresentamos o formalismo Hamiltoniano de Dirac para sistemas singulares, analisando inclusive a construção do gerador de transformações de gauge. A seguir discutimos brevemente a generalização, já conhecida, desse formalismo para o caso de Lagrangeanos singulares de segunda ordem fazendo também uma análise da estrutura de vínculos presente em tais teorias. Desenvolvemos então o formalismo de Hamilton-Jacobi para sistemas singulares fazendo sua generalização para Lagrangeanos de segunda ordem. Por último, ambos formalismos são aplicados à Eletrodinâmica de Podols y e os resultados obtidos são comparados. / Abstract: In this work we study Dirac's Hamiltonian formulation for singular systems including the construction of the gauge transformations generator. Next we briefy discuss the generalization, already developed, of this formalism for singular second order La grangians. Besides that we also make an anlysis of the constrains structure present in such theories. Then we develop the Hamilton-Jacobi formalism for singular systems making its generalization for the case of second order Lagrangians. Finally, both formalisms are applied to Podols y's eletrodynamics and the obtained results are comparad. / Mestre

Page generated in 0.0384 seconds