• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 292
  • 51
  • 49
  • 28
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 2
  • Tagged with
  • 530
  • 207
  • 116
  • 87
  • 76
  • 68
  • 52
  • 46
  • 37
  • 36
  • 35
  • 35
  • 35
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Estabilidade Linear no Problema de Robe / Linear stability problem of Robe

NASCIMENTO, Francisco José dos Santos 17 February 2017 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-04-19T13:09:32Z No. of bitstreams: 1 Francisco José dos Santos Nascimento.pdf: 743351 bytes, checksum: 997f8a5009a3bbc979a7206041daf583 (MD5) / Made available in DSpace on 2017-04-19T13:09:32Z (GMT). No. of bitstreams: 1 Francisco José dos Santos Nascimento.pdf: 743351 bytes, checksum: 997f8a5009a3bbc979a7206041daf583 (MD5) Previous issue date: 2017-02-17 / CAPES / In this work, we discuss the article The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem due to Hallan and Rana. For this we present some basic definitions and results abut Hamiltonian systems such as equilibrium stability of linear Hamiltonian systems. We set out the restricted problem of the three bodies and show some classic results of the problem. Finally we present the Robe’s problem and discuss the main results using Hamiltonian systems theory. / Nesse trabalho, dissertamos sobre o artigo \The Existence and Stability of Equilibrium Points in the Robe Restricted Three-Body Probem" devido a Hallan e Rana. Para isso apresentamos definições e resultados básicos sobre sistemas Hamiltonianos tais como estabilidade de equilíbrios de sistemas Hamiltonianos lineares. Enunciamos o problema restrito dos três corpos e mostramos alguns resultados clássicos do problema. Por fim apresentamos o problema de Robe e discutimos os principais resultados usando a teoria de sistemas Hamiltonianos.
302

A study of heteroclinic orbits for a class of fourth order ordinary differential equations

Bonheure, Denis 09 December 2004 (has links)
In qualitative theory of differential equations, an important role is played by special classes of solutions, like periodic solutions or solutions to some boundary value problems. When a system of ordinary differential equations has equilibria, i.e. constant solutions, whose stability properties are known, it is significant to search for connections between them by trajectories of solutions of the given system. These are called homoclinic or heteroclinic, according to whether they describe a loop based at one single equilibrium or they "start" and "end" at two distinct equilibria. This thesis is devoted to the study of heteroclinic solutions for a specific class of ordinary differential equations related to the Extended Fisher-Kolmogorov equation and the Swift-Hohenberg equation. These are semilinear fourth order bi-stable evolution equations which appear as mathematical models for problems arising in Mechanics, Chemistry and Biology. For such equations, the set of bounded stationary solutions is of great interest. These solve an autonomous fourth order equation. In this thesis, we focus on such equations having a variational structure. In that case, the solutions are critical points of an associated action functional defined in convenient functional spaces. We then look for heteroclinic solutions as minimizers of the action functional. Our main contributions concern existence and multiplicity results of such global and local minimizers in the case where the functional is defined from sign changing Lagrangians. The underlying idea is to impose conditions which imply a lower bound on the action over all admissible functions. We then combine classical arguments of the Calculus of Variations with careful estimates on minimizing sequences to prove the existence of a minimum.
303

Lagrangian Coherent Structures and Transport in Two-Dimensional Incompressible Flows with Oceanographic and Atmospheric Applications

Rypina, Irina I. 20 December 2007 (has links)
The Lagrangian dynamics of two-dimensional incompressible fluid flows is considered, with emphasis on transport processes in atmospheric and oceanic flows. The dynamical-systems-based approach is adopted; the Lagrangian motion in such systems is studied with the aid of Kolmogorov-Arnold-Moser (KAM) theory, and results relating to stable and unstable manifolds and lobe dynamics. Some nontrivial extensions of well-known results are discussed, and some extensions of the theory are developed. In problems for which the flow field consists of a steady background on which a time-dependent perturbation is superimposed, it is shown that transport barriers arise naturally and play a critical role in transport processes. Theoretical results are applied to the study of transport in measured and simulated oceanographic and atmospheric flows. Two particular problems are considered. First, we study the Lagrangian dynamics of the zonal jet at the perimeter of the Antarctic Stratospheric Polar Vortex during late winter/early spring within which lies the "ozone hole". In this system, a robust transport barrier is found near the core of a zonal jet under typical conditions, which is responsible for trapping of the ozone-depleted air within the ozone hole. The existence of such a barrier is predicted theoretically and tested numerically with use of a dynamically-motivated analytically-prescribed model. The second, oceanographic, application considered is the study of the surface transport in the Adriatic Sea. The surface flow in the Adriatic is characterized by a robust threegyre background circulation pattern. Motivated by this observation, the Lagrangian dynamics of a perturbed three-gyre system is studied, with emphasis on intergyre transport and the role of transport barriers. It is shown that a qualitative change in transport properties, accompanied by a qualitative change in the structure of stable and unstable manifolds occurs in the perturbed three-gyre system when the perturbation strength exceeds a certain threshold. This behavior is predicted theoretically, simulated numerically with use of an analytically prescribed model, and shown to be consistent with a fully observationally-based model.
304

La rotation rigide de Mercure: étude des effets à longues périodes/ Mercury rigid rotation: long periods effects

D'Hoedt, Sandrine 26 September 2007 (has links)
<b>Résumé:</b> Dans le but de décrire la rotation résonante rigide de Mercure, différents modèles de rotation résonante de type 3 : 2 à deux et trois dimensions, moyennisés sur les courtes périodes et exprimés en formalisme hamiltonien sont proposés. Dans le premier modèle, l'axe de rotation de Mercure est confondu avec son plus petit axe d'inertie et la planète n'est soumise à l'action d'aucune force autre que celle de la gravitation. Le couplage de ces 2 degrés de liberté est mis en évidence. Un modèle à 3 degrés de liberté tenant compte de la dissociation de l'axe du moment angulaire et de l'axe de figure est ensuite présenté. Dans ces deux modèles, le développement du potentiel est limité à l'ordre 2 en excentricité. Afin d'estimer l'erreur commise par ce choix de troncature, les Hamiltoniens sont développés à des ordres plus élevés; les nouveaux termes ainsi obtenus sont considérés comme des perturbations et traités à l'aide de la théorie de Lie. L'influence des autres planètes du Système Solaire est enfin étudiée en incluant, dans un premier temps, une précession constante du noeud ascendant et du péricentre dans notre modèle de base et, dans un second temps, en considérant que l'inclinaison et l'excentricité sont des fonctions lentes du temps permettant l'utilisation de la théorie de l'invariant adiabatique étendue à 2 degrés de liberté. Une étude des équilibres et des périodes propres de chaque modèle est réalisée.// <b>Abstract:</b> In the aim to describe the Mercury's rigid resonant rotation, different 3: 2 spin-orbit resonant rotation models with two and three dimensions , averaged on the short periods and expressed in Hamiltonian formalism is proposed. In the first model, Mercury's rotation axis and its smallest axis of inertia aren't distinct and no force except the gravitation one acts on the planet. The coupling between these 2 degrees of freedom is underlined. A 3 degrees of freedom model taking into account the dissociation of the angular momentum axis from the figure axis is aftewards presented. In these two models, the potential devellopment is limited to the second order in eccentricity. In order to estimate the error due to this troncature choice, the Hamiltonians are devellopped up to higher orders; the new terms so obtained are considered as perturbations et treated thanks to Lie theory. The influence of the other planets of the Solar System is finally studied by including, in a first time, a constant precession of the ascending node and of the pericenter in our basis model and, in a second time, by considering that the inclination and the excentricity are slow functions of time allowing the use of the adiabatique invariant extended to 2 degrees of freedom. A study of the equilibria and of the proper periods of each model is realized.
305

Charge Transfer in Deoxyribonucleic Acid (DNA): Static Disorder, Dynamic Fluctuations and Complex Kinetic.

Edirisinghe Pathirannehelage, Neranjan S 07 January 2011 (has links)
The fact that loosely bonded DNA bases could tolerate large structural fluctuations, form a dissipative environment for a charge traveling through the DNA. Nonlinear stochastic nature of structural fluctuations facilitates rich charge dynamics in DNA. We study the complex charge dynamics by solving a nonlinear, stochastic, coupled system of differential equations. Charge transfer between donor and acceptor in DNA occurs via different mechanisms depending on the distance between donor and acceptor. It changes from tunneling regime to a polaron assisted hopping regime depending on the donor-acceptor separation. Also we found that charge transport strongly depends on the feasibility of polaron formation. Hence it has complex dependence on temperature and charge-vibrations coupling strength. Mismatched base pairs, such as different conformations of the G・A mispair, cause only minor structural changes in the host DNA molecule, thereby making mispair recognition an arduous task. Electron transport in DNA that depends strongly on the hopping transfer integrals between the nearest base pairs, which in turn are affected by the presence of a mispair, might be an attractive approach in this regard. I report here on our investigations, via the I –V characteristics, of the effect of a mispair on the electrical properties of homogeneous and generic DNA molecules. The I –V characteristics of DNA were studied numerically within the double-stranded tight-binding model. The parameters of the tight-binding model, such as the transfer integrals and on-site energies, are determined from first-principles calculations. The changes in electrical current through the DNA chain due to the presence of a mispair depend on the conformation of the G・A mispair and are appreciable for DNA consisting of up to 90 base pairs. For homogeneous DNA sequences the current through DNA is suppressed and the strongest suppression is realized for the G(anti)・A(syn) conformation of the G・A mispair. For inhomogeneous (generic) DNA molecules, the mispair result can be either suppression or an enhancement of the current, depending on the type of mispairs and actual DNA sequence.
306

A Quasilocal Hamiltonian for Gravity with Classical and Quantum Applications

Booth, Ivan January 2000 (has links)
I modify the quasilocal energy formalism of Brown and York into a purely Hamiltonian form. As part of the reformulation, I remove their restriction that the time evolution of the boundary of the spacetime be orthogonal to the leaves of the time foliation. Thus the new formulation allows an arbitrary evolution of the boundary which physically corresponds to allowing general motions of the set of observers making up that boundary. I calculate the rate of change of the quasilocal energy in such situations, show how it transforms with respect to boosts of the boundaries, and use the Lanczos-Israel thin shell formalism to reformulate it from an operational point of view. These steps are performed both for pure gravity and gravity with attendant matter fields. I then apply the formalism to characterize naked black holes and study their properties, investigate gravitational tidal heating, and combine it with the path integral formulation of quantum gravity to analyze the creation of pairs of charged and rotating black holes. I show that one must use complex instantons to study this process though the probabilities of creation remain real and consistent with the view that the entropy of a black hole is the logarithm of the number of its quantum states.
307

Combinatorial Path Planning for a System of Multiple Unmanned Vehicles

Yadlapalli, Sai Krishna 2010 December 1900 (has links)
In this dissertation, the problem of planning the motion of m Unmanned Vehicles (UVs) (or simply vehicles) through n points in a plane is considered. A motion plan for a vehicle is given by the sequence of points and the corresponding angles at which each point must be visited by the vehicle. We require that each vehicle return to the same initial location(depot) at the same heading after visiting the points. The objective of the motion planning problem is to choose at most q(≤ m) UVs and find their motion plans so that all the points are visited and the total cost of the tours of the chosen vehicles is a minimum amongst all the possible choices of vehicles and their tours. This problem is a generalization of the wellknown Traveling Salesman Problem (TSP) in many ways: (1) each UV takes the role of salesman (2) motion constraints of the UVs play an important role in determining the cost of travel between any two locations; in fact, the cost of the travel between any two locations depends on direction of travel along with the heading at the origin and destination, and (3) there is an additional combinatorial complexity stemming from the need to partition the points to be visited by each UV and the set of UVs that must be employed by the mission. In this dissertation, a sub-optimal, two-step approach to motion planning is presented to solve this problem:(1) the combinatorial problem of choosing the vehicles and their associated tours is based on Euclidean distances between points and (2) once the sequence of points to be visited is specified, the heading at each point is determined based on a Dynamic Programming scheme. The solution to the first step is based on a generalization of Held-Karp’s method. We modify the Lagrangian heuristics for finding a close sub-optimal solution. In the later chapters of the dissertation, we relax the assumption that all vehicles are homogenous. The motivation of heterogenous variant of Multi-depot, Multiple Traveling Salesmen Problem (MDMTSP) derives form applications involving Unmanned Aerial Vehicles (UAVs) or ground robots requiring multiple vehicles with different capabilities to visit a set of locations.
308

Energy Preserving Methods For Korteweg De Vries Type Equations

Simsek, Gorkem 01 July 2011 (has links) (PDF)
Two well-known types of water waves are shallow water waves and the solitary waves. The former waves are those waves which have larger wavelength than the local water depth and the latter waves are used for the ones which retain their shape and speed after colliding with each other. The most well known of the latter waves are Korteweg de Vries (KdV) equations, which are widely used in many branches of physics and engineering. These equations are nonlinear long waves and mathematically represented by partial differential equations (PDEs). For solving the KdV and KdV-type equations, several numerical methods were developed in the recent years which preserve their geometric structure, i.e. the Hamiltonian form, symplecticity and the integrals. All these methods are classified as symplectic and multisymplectic integrators. They produce stable solutions in long term integration, but they do not preserve the Hamiltonian and the symplectic structure at the same time. This thesis concerns the application of energy preserving average vector field integrator(AVF) to nonlinear Hamiltonian partial differential equations (PDEs) in canonical and non-canonical forms. Among the PDEs, Korteweg de Vries (KdV) equation, modified KdV equation, the Ito&rsquo / s system and the KdV-KdV systems are discetrized in space by preserving the skew-symmetry of the Hamiltonian structure. The resulting ordinary differential equations (ODEs) are solved with the AVF method. Numerical examples confirm that the energy is preserved in long term integration and the other integrals are well preserved too. Soliton and traveling wave solutions for the KdV type equations are accurate as those solved by other methods. The preservation of the dispersive properties of the AVF method is also shown for each PDE.
309

Berechnung von STM-Profilkurven und von Quantenbillards endlicher Wandhoehe

Sbosny, Hartmut 09 September 1996 (has links) (PDF)
Die Arbeit befasst sich mit zweierleiZum einen wird der STM-Abbildungsprozess simuliert, indem Probe und Spitze durch zweidimensionale Sommerfeld-Metalle frei waehlbarer Geometrie beschrieben werden und der Tunnelstrom im Transfer-Hamiltonian-Formalismus bestimmt wird. Die Berechnung der Eigenzustaende der Elektroden erfolgt numerisch durch Diskretisierung der Schroedingergleichung im Differenzenverfahren. Ueber die geometrische Entfaltung der erhaltenen Konstantstromprofile mit der Spitzengeometrie werden der Vergleich zum geometrischen (mechanischen) Abtasten gezogen und Moeglichkeiten einer Vermessung von Spitze und Probe diskutiert. Zum anderen wird durch Berechnung von Eigenzustaenden in grossen zweidimensionalen Potentialkaesten (Quantenbillards) endlicher Wandhoehe der Frage nachgegangen, welchen Einfluss klassisch verbotene Gebiete (Aussenraum, Tunnelbarriere) auf Eigenfunktionen in semiklassisch grossen Systemen haben. Betrachtet wird insbesondere ein Gesamtsystem bestehend aus zwei Potentialkaesten, die ueber eine Tunnelbarriere koppeln (¨Quantenbillards endlicher Wandhoehe im Tunnelkontakt¨). Bei einer Reihe von Zustaenden zeigen sich Scars, die aus der Barriere austreten und in diese zuruecklaufen. Das Gesamtsystem ist in hohem Masse nichtintegrabel, ¨sichtbar¨ wird dieses aber nur fuer Bahnen entweder des Kontinuums oder fuer komplexe Orbits. Eine semiklassische Beschreibung dieses Phaenomens mit der gegenwaertigen, auf klassischen Orbits fussenden Theorie periodischer Bahnen ist nicht mehr moeglich. Die Einbeziehung komplexer Orbits oder Bahnen des Kontinuums (¨ungebundener Orbits¨) wird durch diese Ergebnisse angemahnt.
310

Infinite-dimensional Hamiltonian systems with continuous spectra : perturbation theory, normal forms, and Landau damping

Hagstrom, George Isaac 28 October 2011 (has links)
Various properties of linear infinite-dimensional Hamiltonian systems are studied. The structural stability of the Vlasov-Poisson equation linearized around a homogeneous stable equilibrium [mathematical symbol] is investigated in a Banach space setting. It is found that when perturbations of [mathematical symbols] are allowed to live in the space [mathematical symbols], every equilibrium is structurally unstable. When perturbations are restricted to area preserving rearrangements of [mathematical symbol], structural stability exists if and only if there is negative signature in the continuous spectrum. This analogizes Krein's theorem for linear finite-dimensional Hamiltonian systems. The techniques used to prove this theorem are applied to other aspects of the linearized Vlasov-Poisson equation, in particular the energy of discrete modes which are embedded within the continuous spectrum. In the second part, an integral transformation that exactly diagonalizes the Caldeira-Leggett model is presented. The resulting form of the Hamiltonian, derived using canonical transformations, is shown to be identical to that of the linearized Vlasov-Poisson equation. The damping mechanism in the Caldeira-Leggett model is identified with the Landau damping of a plasma. The correspondence between the two systems suggests the presence of an echo effect in the Caldeira-Leggett model. Generalizations of the Caldeira-Leggett model with negative energy are studied and interpreted in the context of Krein's theorem. / text

Page generated in 0.0495 seconds