Spelling suggestions: "subject:"had written""
1 |
An investigation into the use of linguistic context in cursive script recognition by computerBrammall, Neil Howard January 1999 (has links)
The automatic recognition of hand-written text has been a goal for over thirty five years. The highly ambiguous nature of cursive writing (with high variability between not only different writers, but even between different samples from the same writer), means that systems based only on visual information are prone to errors. It is suggested that the application of linguistic knowledge to the recognition task may improve recognition accuracy. If a low-level (pattern recognition based) recogniser produces a candidate lattice (i.e. a directed graph giving a number of alternatives at each word position in a sentence), then linguistic knowledge can be used to find the 'best' path through the lattice. There are many forms of linguistic knowledge that may be used to this end. This thesis looks specifically at the use of collocation as a source of linguistic knowledge. Collocation describes the statistical tendency of certain words to co-occur in a language, within a defined range. It is suggested that this tendency may be exploited to aid automatic text recognition. The construction and use of a post-processing system incorporating collocational knowledge is described, as are a number of experiments designed to test the effectiveness of collocation as an aid to text recognition. The results of these experiments suggest that collocational statistics may be a useful form of knowledge for this application and that further research may produce a system of real practical use.
|
2 |
Analýza ručně psaného projevu u pacientů postižených neurologickými onemocněními / Analysis of hand-written text of patients with neurological disordersGaláž, Zoltán January 2014 (has links)
The master‘s thesis deals with the analysis of the hand-written text. There is a design and a realization of a system for the purpose of diagnosing a Parkinson’s desease based on the analysis of hand-written text. The system consists from several modules and it is programmed in the programming environment of MATLAB. The first module provides pre-processing of the records to adjust records to the form suitable for the segmentation. Afterwards, the records are divided into those with signals onto the surface of the tablet and those with the signals above the surface of the tablet. In the next module the records are segmented by the two-phase metod of automatic segmentation.High-level featuresare calculated from the extracted features. The results of the statistical analysis are exported in the form suitable for the classification process. The classification is performed by the proposed model made in the programming environment of RapidMiner. The output of designed system is the trained model capable of automatic classification of the Parkinson’s disease by the analysis of the hand-written text.
|
3 |
Analýza ručně psaného projevu u pacientů postižených neurologickými onemocněními / Analysis of hand-written text of patients with neurological disordersGaláž, Zoltán January 2014 (has links)
The master‘s thesis deals with the analysis of the hand-written text. There is a design and a realization of a system for the purpose of diagnosing a Parkinson’s desease based on the analysis of hand-written text. The system consists from several modules and it is programmed in the programming environment of MATLAB. The first module provides pre-processing of the records to adjust records to the form suitable for the segmentation. Afterwards, the records are divided into those with signals onto the surface of the tablet and those with the signals above the surface of the tablet. In the next module the records are segmented by the two-phase metod of automatic segmentation.High-level featuresare calculated from the extracted features. The results of the statistical analysis are exported in the form suitable for the classification process. The classification is performed by the proposed model made in the programming environment of RapidMiner. The output of designed system is the trained model capable of automatic classification of the Parkinson’s disease by the analysis of the hand-written text.
|
4 |
Feature Analysis in Online Signature Verification on Digital Whiteboard : An analysis on the performance of handwritten signature authentication using local and global features with Hidden Markov models / Feature-analys inom online signaturigenkänning på digitala whiteboards : En analys av hur lokala och globala features presterar i dolda MarkovmodellerOlander Sahlén, Simon January 2018 (has links)
The usage of signatures for authentication is widely accepted, and remains one of the most familiar biometric in our society. Efforts to digitalise and automate the verification of these signatures are hot topics in the field of Machine Learning, and a plethora of different tools and methods have been developed and adapted for this purpose. The intention of this report is to study the authentication of handwritten signatures on digital whiteboards, and how to most effectively set up a dual verification system based on Hidden Markov models (HMMs) and global aggregate features such as average speed. The aim is to gauge which features are Suitable for determining that a signature is in fact genuine Suitable for rejecting forgeries Unsuitable for gauging the authenticity of a signature all together In addition, we take a look at the configuration of the HMMs themselves, in order to find good configurations for The number of components used in the model What type of covariance to use The best threshold to draw the line between a genuine signature and a forgery For the research, we collected a total of 200 signatures and 400 forgeries, gathered from 10 different people on digital whiteboards. We concluded that the best configurations of our HMMs had 11 components, used a full covariance model, and observed about five features, where pressure, angle and speed were the most important. Among the global features, we discarded 11 out of 35 due to either strong correlation with other features, or contained too little discriminatory information. The strongest global features were the ones pertaining to speed, acceleration, direction, and curvature. Using the combined verification we obtained an EER of 7 %, which is in the typical range of contemporary studies. We conclude that the best way to combine global feature verification with local HMM verification is to perform both separately, and only accept signatures that are admissible by both, with a tolerance level for the global and local verifications of 1.2 and 2.5 standard deviations, respectively. / Användandet av signaturer för autentisering är allmänt accepterat, och är fortfarande den mest använda biometriken i vårt samhälle. Arbetet med att digitalisera och automatisera verifieringen av dessa signaturer är ett populärt ämne inom maskininlärning, och en uppsjö av olika verktyg och metoder har utvecklats och anpassats för detta ändamål. Avsikten med denna studie är att bestämma hur man mest framgångsrikt kan inrätta ett verifikationssystem för handskrivna signatures på digitala whiteboards baserat på dolda Markovmodeller (HMMs) och globalt aggregerade attribut. Syftet är att bedöma vilka features som är Lämpliga för att bestämma huruvida en signatur är äkta Lämpliga för att avvisa förfalskningar Olämpliga för att mäta äktheten hos en signatur över huvud taget Utöver detta studerar vi HMM-konfigurationen själv, i syfte att hitta bra konfigurationer för Antalet komponenter som används i modellen Vilken typ av kovarians som ger bäst resultat Det bästa tröskelvärdet vid vilken att dra gränsen för huruvida en signatur är äkta eller förfalskad För forskningen samlade vi totalt in 200 signaturer och 400 förfalskningar från 10 olika personer med hjälp av digitala whiteboards. Vi drog slutsatsen att de bästa konfigurationerna hade 11 komponenter, använde komplett kovarians, och använde cirka fem features, där tryck, vinkel och hastighet var det viktigaste. Bland våra globala features kastade vi 11 av 35 på grund av att de antingen korrelerade för starkt med andra features, eller på grund av att de innehöll för lite information för att utröna huruvida en signatur var äkta eller ej. Våra bästa globala features var de som hänförde sig till hastighet, acceleration, riktning och krökning. Genom att använda den kombinerade verifieraren fick vi en EER på 7 %, vilket är i linje med liknande studier. Vi drog även slutsatsen att det bästa sättet att kombinera global verifiering med lokal HMM-verifiering är att utföra dem separat och endast acceptera signaturer som godkänns av bägge två. Den bästa toleransnivån för den globala och lokala verifieraren var 1,2 och 2,5 standardavvikelser, respektive.
|
5 |
Šriftinės interpretacijos ir jų taikymas dailės pamokose / Interpretation of hand-written characters and their aplication in art lessonsDzedulionis, Ignas 16 August 2007 (has links)
Gebėjimu išraiškingai rašyti rūpinasi bendrojo lavinimo mokyklos, tėvai, draugai, bendramoksliai. Nuo aplinkos priklauso ar mokinys skirs pakankamai dėmesio savo raštui, ar ne. Kadangi šrifto formose pasireiškia mokinio individualus charakteris, nuotaikos, todėl negatyvi nuostata į rašymą gali paveikti vaiko charakterio vystimąsi, pasitikėjimą savimi. Tyrimo problema – mokinių kūrybiškumo ugdymas, pasitelkiant šriftinę interpretaciją. Tyrimo objektas – paauglių šriftinės interpretacijos. Tyrimo tikslas - atskleisti šriftinės interpretacijos ypatumus dailės pamokose, o Tyrimo hipoteze spėjama, kad šrifto mokymas dailės pamokose praplečia mokinių vizualinės raiškos diapazoną. Tyrimo uždaviniai: Apžvelgti metodinę literatūrą apie šrifto vystymąsi ir taikymo ypatumus; apibūdinti šrifto interpretacijos taikymo dailės pamokose ypatumus; atskleisti šriftinės interpretacijos vaidmenį paauglių vizualinėje raiškoje. Tyrime naudoti metodai: teoriniai, empiriniai (anketinė apklausa ir paauglių šriftinės interpretacijos darbų analizė) ir matematinės analizės metodas.
Tyrimas vyko Vilniaus vaikų ir jaunimo dailės mokykloje 2007 vasario - kovo mėn., kuriuo norėta ištirti Vilniaus vaikų ir jaunimo dailės mokyklos paauglių šrifto mokymosi ypatumus. Darbų analizei atrinkti paauglių (12 - 16 metų) šriftinės interpretacijos 205 darbai. Anketinė apklausa atlikta su 45 minėtos mokyklos to paties amžiaus mokiniais. Anketa norima išsiaiškinti mokinių požiūrį, žinias ir įgūdžius šrifto ir... [toliau žr. visą tekstą] / Schools, parents, friends and schoolmates take care of the ability to write expressively. Whether a pupil will pay enough attention to his handwriting or not depends on the environment. As individual nature of a learner reveals in hand-written characters, negative attitude to writing can influence the development of a child’s character and self-confidence.
Research of the problem — development of schoolchildren’s creativeness with the help of interpretation of hand written characters. Object of the study (research) — teenagers’ Interpretations of hand-written characters. The aim of the research — to reveal the peculiarities of interpretation of hand-written characters in art lessons and the hypothesis of the study is supposed that hand-written characters in art lessons broaden schoolchildren’s range of visual impression. The objectives of the research — to look over methodical literature about development of hand-written characters and applying peculiarities, to describe the applying of interpretation hand written characters in art lessons, to reveal the role of interpretation of hand-written characters in teenagers visual expression. Methods used in the research: theoretical, empirical (the survey and analysis of teenagers’ interpretation of hand—written works) and the method of mathematical analysis.
The research was accomplished at children and youth art school in Vilnius in February-March, 2007, with the help of which the peculiarities of learning interpretation of... [to full text]
|
6 |
Automatic signature verification systemMalladi, Raghuram January 2013 (has links)
Philosophiae Doctor - PhD / In this thesis, we explore dynamic signature verification systems. Unlike other signature models, we use genuine signatures in this project as they are more appropriate in real world applications. Signature verification systems are typical examples of biometric devices that use physical and behavioral characteristics to verify that a person really is who he or she claims to be. Other popular biometric examples include fingerprint scanners and hand geometry devices. Hand written signatures have been used for some time to endorse financial transactions and legal contracts although little or no verification of signatures is done. This sets it apart from the other biometrics as it is well accepted method of authentication. Until more recently, only hidden Markov models were used for model construction. Ongoing research on signature verification has revealed that more accurate results can be achieved by combining results of multiple models. We also proposed to use combinations of multiple single variate models instead of single multi variate models which are currently being adapted by many systems. Apart from these, the proposed system is an attractive way for making financial transactions more secure and authenticate electronic documents as it can be easily integrated into existing transaction procedures and electronic communications
|
Page generated in 0.0684 seconds