241 |
Cartesian Force Estimation of a 6-DOF Parallel Haptic Device / Kartesisk kraftuppskattning av en 6-DOF parallellhaptisk enhetDong, Fanghong January 2019 (has links)
The haptic device recreates the sense of touch by applying forces to the user. Since the device is “rendering” forces to emulate the physical interaction, the force control is essential for haptic devices. While a dedicated force/torque sensor can close the loop of force control, the additional equipment creates extra moving mass and inertia at the tool center point (TCP). Therefore, estimating the Cartesian force at the TCP has continuously been receiving attention over the past decades. The objective of this thesis project is to develop a real-time force estimation algorithm based on the proportional current-torque relationship with the dynamic modeling of the TAU haptic device. The algorithm can be further used for the force control of the device. The research questions of the thesis are: how to design and develop an algorithm for the TAU that used for Cartesian contact force estimation, how to set up the force estimation test bench and how to evaluate the results of the force estimation algorithm. In order to achieve the force estimation algorithm, a virtual environment is built to simulate the real-time haptic physics. Then an external force/torque sensor is installed at the TCP to get the measurement of the Cartesian force at the TCP. The force estimation algorithm calculates the Cartesian force at the TCP based on the current measurement of the DC motors at the six joints. The estimation result of the Cartesian force at the TCP is then compared with the force/torque sensor measurement to determine if the estimation algorithm is sufficiently accurate. The analysis of the estimation accuracy emphasizes the feasibility of Cartesian force estimation on the TAU haptic device. / En haptikenhet gör det möjligt att förmedla en känsla av kontakt i en virtuell värld genom att skapa krafter som motverkar en rörelse . Hur denna kraft skapas och kontrolleras är av stor vikt för att få den så verklighetstrogen som möjligt. Om man har en kraftsensor kan den användas till att utforma en kraftreglering med återkoppling, men på bekostnad av en ökad massa och tröghet vid användarens hand. Detta har medfört ett ökat intresse under de senaste åren för att på olika sätt försöka uppskatta den kraft som återkopplas till användaren utan att behöva en kraftsensor. Målet för detta examensarbete är att utveckla en algoritm för att uppskatta en kontaktkraft i realtid baserat på antagandet att motormomentet är proportionellt beroende av strömmen. Algoritmen kan sedan användas för att konstruera en sluten reglerloop med kraftåterkoppling för en haptisk enhet. Forskningsfrågorna som behandlas i detta examensarbete är; hur kan vi utforma en algoritm för estimering av kontaktkrafter för haptikenheten TAU hur kan vi utforma en experimentell försöksuppställning för mätning av de verkliga kontaktkrafterna från TAU vid kontakt. hur kan vi använda resultaten från experimenten för utvärdering av algoritmen För testning och utvärdering av algoritmen har en virtuell värld skapats för att efterlikna en simuleringsmiljö som haptikenheten är tänkt att användas i. En kraftsensor har monterats under det verktyg som användaren håller i när enheten används när ett typiskt ingrepp ska övas i en simulator, t.ex. borrning i en tand. Vid experimenten beräknar algoritmen den uppskattade kontaktkraften som användaren känner baserat på den uppmätta strömmen för de sex motorer som aktiveras av kontakten. Dessa beräknade värden har sedan jämförts med de från kraftsensorn uppmätta för att avgör om algoritmen är tillräckligt noggrann. Analysen visar att noggrannheten är tillräckligt bra för att vara en lovande ansats till att användas för kraftuppskattning vid reglering av kontaktkraft för haptikenheten TAU.
|
242 |
Exploration of a Bayesian probabilistic model for categorization in the sense of touch / Bayesian Categorization in TouchGauder, Kyra Alice January 2024 (has links)
Categorization is a complex decision-making process that requires observers to collect information about stimuli using their senses. While research on visual or auditory categorization is extensive, there has been little attention given to tactile categorization. Here we developed a paradigm for studying tactile categorization using 3D-printed objects. Furthermore, we derived a categorization model using Bayesian inference and tested its performance against human participants in our categorization task. This model accurately predicted participant performance in our task but consistently outperformed them, even after extending the learning period for our participants. Through theoretical exploration and simulations, we demonstrated that the presence of sensory measurement noise could account for this performance gap, which we determined was a present factor in participants undergoing our task through a follow-up experiment. Including measurement noise led to a better-fitting model that was able to match the performance of our participants much more closely. Overall, the work in this thesis provides evidence for the efficacy of a tactile categorization experimental paradigm, demonstrates that a Bayesian model is a good fit and predictor for human categorization performance, and underscores the importance of accounting for sensory measurement noise in categorization models. / Dissertation / Doctor of Philosophy (PhD) / The process of categorization is an essential part of our daily life as we encounter various things in the world. Here we explore a model that attempts to explain this process. This model is derived using Bayesian inference and was applied to human behavioural data in a categorization task. We found that the model accounted for most of the performance of our participants but consistently outperformed them. We conducted simulations to explore and demonstrate that this difference is primarily due to the presence of sensory noise in participants. Once we accounted for this noise, we found that our model predicted human performance even more accurately. The work in this thesis demonstrates that a Bayesian Categorization Model which accounts for sensory noise is a good fit and predictor for human performance on categorization tasks.
|
243 |
The Pursuit of Haptic-ness: Exploring the Significance of a Haptic Reflective Practice in Graphic Design EducationBruner, Olivia 16 June 2017 (has links)
No description available.
|
244 |
Viewing Options for the Virtual Haptic Back (VHB)Ji, Wei 12 October 2005 (has links)
No description available.
|
245 |
Implamention and Evaluation of a Haptic Playback System for the Virtual Haptic BackSrivastava, Mayank January 2005 (has links)
No description available.
|
246 |
Implementation of a virtual haptic backHolland, Kerry Lenore January 2001 (has links)
No description available.
|
247 |
Implementation and Evaluation of a Multiple-Points Haptic Rendering AlgorithmSrivastava, Mayank 16 July 2007 (has links)
No description available.
|
248 |
Spatial Partitioning and Functional Shape Matched Deformation Algorithm for Interactive Haptic ModelingJi, Wei 29 December 2008 (has links)
No description available.
|
249 |
Art for the visually impaired and blind a case study of one artist's solutionReidmiller, Lauri Lydy 05 September 2003 (has links)
No description available.
|
250 |
A virtual temporal bone dissection simulatorBryan, Jason Allen January 2001 (has links)
No description available.
|
Page generated in 0.0241 seconds