• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 18
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat exchanger network optimization by differential evolution method

Thuy, N.T.P., Pendyala, R., Rahmanian, Nejat, Marneni, N. 05 July 2021 (has links)
No / The synthesis of heat exchanger network (HEN) is a comprehensive approach to optimize energy utilization in process industry. Recent developments in HEN synthesis (HENS) present several heuristic methods, such as Simulated Annealing (SA), Genetic Algorithm (GA), and Differential Evolution (DE). In this work, DE method for synthesis and optimization of HEN has been presented. Using DE combined with the concept of super-targeting, the ΔTmin optimization is determined. Then DE algorithm is employed to optimize the global cost function including the constraints, such as heat balance, the temperatures of process streams. A case study has been optimized using DE, generated structure of HEN and compared with networks obtained by other methods such as pinch technology or mathematical programming. Through the result, the proposed method has been illustrated that DE is able to apply in HEN optimization, with 16.7% increase in capital cost and 56.4%, 18.9% decrease in energy, global costs respectively.
2

Energy system analysis

Soundararajan, Ranjith January 2017 (has links)
The purpose of this thesis is to use a model to optimize the heat exchanger network for process industry and to estimate the minimum cost required for the heat exchanger network without compromising the energy demand by each stream as much as possible with the help of MATLAB programming software. Here, the optimization is done without considering stream splitting and stream combining. The first phase involves with deriving a simple heat exchanger network consisting of four streams i.e... Two hot streams and two cold streams required for the heat exchanger using the traditional Pinch Analysis method. The second phase of this work deals with randomly placing the heat exchanger network between the hot and cold streams and calculating the minimum cost of the heat exchanger network using genetic coding which is nothing but thousands of randomly created heat exchangers which are evolved over series of population.
3

Heat Exchanger Network Synthesis With Detailed Design: Reformulation As A Shortest Path Problem By Temperature Discretization

Kirkizoglu, Isil 01 September 2012 (has links) (PDF)
This study presents an optimization approach to heat exchanger network synthesis (HENS). HENs are widely used in industry and bring several fluid streams into their desired temperatures by using available heat in the process for efficient usage of energy. Our aim is to provide a network design coupled with a detailed equipment design for heat exchangers. The suggested approach involves discretization of temperatures based on heat load equalities and reformulation as a shortest-path problem, rather than dealing with a nonlinear model and a previously structured HEN, which are common methods in the literature. We generate a shortest path network whose every node corresponds to a heat exchanger alternative and each path represents a HEN design alternative. A mixed-integer nonlinear programming model is solved to design each exchanger alternative in detail, considering all thermo-physical and transport properties of streams at their temperatures and pressures. Our approach has modeling flexibility and successfully finds the required number of heat exchangers and their connections. In addition, one can control the solution quality by deciding on the heat load steps between stream inlet and outlets. Several HEN examples from the literature are solved to assess the performance of our approach and comparable results are obtained.
4

Simultaneous Design, Scheduling and Operation Through Process Integration

Al-Mutairi, Eid M. 15 May 2009 (has links)
Processing facilities are normally designed with sufficient flexibility to handle nominal variations. When the process features planned changes in feedstock and products, scheduling is often used to optimize process operation. The objective of this dissertation is to develop a new approach to design and scheduling with economic, environmental, heat integration and inherently safer design objectives. Specifically, this work introduces a systematic framework and the associated mathematical formulation for simultaneous process design and scheduling while simultaneously addressing economic, environmental, heat integration and inherently safer design objectives. Therefore, more than one type of proper tradeoffs are established between these objectives. The environmental issues pertaining to the parameterized process retrofitting, scheduling, and operation strategies are simultaneously considered along with the environmental impact of these changes. Similarly, the design synthesis of heat-exchange networks (HENs) is addressed in the context of optimizing energy consumption under scheduling scenarios. Finally, the goal of inherently safer design is simultaneously considered with the expected schedules of the process. Several optimization formulations are developed for the projected schedules while allowing design modifications and retrofitting changes. The modifications and changes include new environmental management units, synthesis of flexible and optimal HENs, and design of an inherently safer process. Process models with the appropriate level of relevant details are included in the formulations. A discretization approach has been adopted to allow for a multiperiod optimization formulation over a given time horizon. The resulting framework identifies opportunities for synergism between the economic, environmental, heat integration and inherently safer design objectives. It also determines points of diminishing return beyond which tradeoffs between the above mentioned objectives are established. The devised procedure is illustrated with case studies.
5

Uma nova estrategia para reestruturação de redes de trocadores de calor / A new strategy for retrofit of heat exchanger networks

Herkenhoff, Rogerio Geaquinto 08 November 2008 (has links)
Orientador: Roger Josef Zem / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Quimica / Made available in DSpace on 2018-08-11T12:32:37Z (GMT). No. of bitstreams: 1 Herkenhoff_RogerioGeaquinto_D.pdf: 1183174 bytes, checksum: f7777dadb80f82afeeb6190f4bb190e9 (MD5) Previous issue date: 2008 / Nesta tese é proposta uma nova estratégia para o projeto de reestruturação de redes de trocadores de calor, qualquer que seja seu objetivo: ampliação de carga ou modificações das condições operacionais, otimização da recuperação de energia, melhor atendimento das demandas do processo industrial, etc. Esta proposta é baseada num método consagrado, conhecido como "Pinch Design Method" e originalmente restrito ao projeto de redes novas ("grass-root design"), e inclui toda a formulação e demais requisitos necessários para sua extensão à reestruturação de redes existentes. Tanto o método original quanto a adaptação agora proposta têm origem termo dinâmica e montagem "manual" da rede, em oposição à (síntese) automatizada. A base conceitual da chamada "Pinch Technology" é extensivamente apresentada e discutida na tese, que a!nda inclui vários estudos de caso para demonstrar sua atualidade, através da confrontação com os resultados típicos da síntese automatizada de redes novas. o método proposto é basicamente dedicado ao pré-estabelecimento dos objetivos de projeto, com a posterior utilização das regras de síntese e demais ferramentas do método original. Em comparação com o procedimento tradicional sugerido no contexto da "Pinch Technology", o método proposto propõe objetivos mais ambiciosos, e ainda assim, realistas (na remontagem da rede, os objetivos previamente estabelecidos podem ser alcançados). O processo de remontagem da rede, embora mais difícil que a síntese de redes novas, também é facilitado em relação ao método tradicional que, além disto, tem aplicação mais restrita. A reestruturação automatizada de redes não é contemplada neste estudo, mesmo porque ela ainda não dispõe de produtos largamente aprovados, para uso geral. Na parte final da tese, três exemplos complexos demonstram as mais relevantes vantagens do método proposto sobre o método tradicional manual (nos casos em que ele se aplica), e sua maior (ou irrestrita) aplicabilidade / Abstract: In this thesis, it is proposed a new design strategy for restructuring existing heat exchanger networks, regardless of its objective: heat recovery optimization, better or full achievement of the industrial process demands, reutilization under different operational conditions, plant capacity expansion, etc. The proposed strategy is based on the widely approved Pinch Design Method, originally restricted to the design of new networks (grass-root design), and inc1udes all formulatioIÍ and additional requirements for its extension to existing networks (retrofits, revamps, etc.). Both the original and the proposed method are thermodynamically based, with manual construction of the network structure, in opposition to the automated synthesis. The conceptual basis of the Pinch Technology is extensively presented and discussed in the.thesis, which also inc1udes several case studies to demonstrate its realism, when confronted to the typical results of the automated synthesis of new networks. The proposed method is basically devoted to the pre-establishment of design objectives (targeting), and takes laler advantage of the synthesis rules and accessory tools of the original methodology. In comparison with the most traditional non-automated Pinch method, the new strategy suggests more ambitious design targets, but quite still realistic (for all case studies, it was found a modified structure to meet the targets). Because of the similarity with a new design, finding a modified structure to achieve 'the targets is alsG easier than in the traditional method, whose application is also more restricted. Automated restructuring of existing networks is not inc1uded in our case studies. as no corresponding reliable product is commercially available for general use. Finally, three complex examples demonstrate the most relevant advantages ane realism ofthe proposed method, compared to the traditional one (when applicable), as wel as its wider (or unrestricted) applicability / Doutorado / Sistemas de Processos Quimicos e Informatica / Doutor em Engenharia Química
6

Analysis, synthesis and optimization of complex cooling water systems

Gololo, Khunedi Vincent January 2013 (has links)
Cooling water systems are used to remove excess heat from a chemical process to the atmosphere. The primary components of these systems are the cooling tower and the heat exchanger network. There is a strong interaction between these individual components, thus their performances are interrelated. Most published research in this area has focused mainly on optimization of the individual components i.e. optimization of heat exchanger network or optimization of the cooling towers. This approach does not optimize the cooling water system as a whole. Previous research work in which a holistic approach was used is limited to cooling water systems with single cooling water source. This work presents a technique for integrated optimization of complex cooling water systems. The system under consideration consists of multiple cooling towers each supplying a set of heat exchangers. A superstructural approach is employed to explore all possible combinations between the heat exchangers and the cooling towers. The cooling water reuse opportunities within the heat exchanger networks are also explored. A detailed mathematical model consisting of the cooling towers and the heat exchanger networks model is developed. Two practical scenarios are considered and the mathematical formulations for Case I and II yield nonlinear programing (NLP) and mixed integer nonlinear programming (MINLP) structure respectively. Although the reuse/recycle philosophy offers a good debottlenecking opportunity, the topology of the associated cooling water network is more complex, hence prone to higher pressure drop than the conventional parallel design. This is due to an increased network pressure drop associated with additional reuse/recycle streams. Therefore, it is essential to consider pressure drop during the synthesis of cooling water networks where the reuse/recycle philosophy is employed. The on-going research in this area is only limited to cooling water networks consisting of a single cooling water source. The common technique used is mathematical optimization using either superstructural or non superstructural approach. This work further presents a mathematical technique for pressure drop optimization in cooling water systems consisting of multiple cooling towers. The proposed technique is based on the Critical Path Algorithm and the superstructural approach. The Critical Path Algorithm is used to select the cooling water network with minimum pressure drop whilst the superstructural approach allows for cooling water reuse. The technique which was previously used in a cooling water network with single source is modified and applied in a cooling water network with multiple sources. The mathematical formulation is developed considering two cases. Both cases yield mixed integer nonlinear programming (MINLP) models. The cooling tower model is also used to predict the exit condition of the cooling tower given the inlet conditions from the cooling water network model. The results show up to 29% decrease in total circulating cooling water flowrate when the cooling water system is debottlenecked without considering pressure drop. Consequently, the overall cooling towers effectiveness was improved by up to 5%. When considering pressure drop the results showed up to 26% decrease in total circulating water flowrate. / Thesis (PhD)--University of Pretoria, 2013. / gm2013 / Chemical Engineering / unrestricted
7

Optimal design and operation of heat exchanger network

Salihu, Adamu Girei January 2015 (has links)
Heat exchanger networks (HENs) are the backbone of heat integration due to their ability in energy and environmental managements. This thesis deals with two issues on HENs. The first concerns with designing of economically optimal Heat exchanger network (HEN) whereas the second focus on optimal operation of HEN in the presence of uncertainties and disturbances within the network. In the first issue, a pinch technology based optimal HEN design is firstly implemented on a 3–streams heat recovery case study to design a simple HEN and then, a more complex HEN is designed for a coal-fired power plant retrofitted with CO2 capture unit to achieve the objectives of minimising energy penalty on the power plant due to its integration with the CO2 capture plant. The benchmark in this case study is a stream data from (Khalilpour and Abbas, 2011). Improvement to their work includes: (1) the use of economic data to evaluate achievable trade-offs between energy, capital and utility cost for determination of minimum temperature difference; (2) redesigning of the HEN based on the new minimum temperature difference and (3) its comparison with the base case design. The results shows that the energy burden imposed on the power plant with CO2 capture is significantly reduced through HEN leading to utility cost saving maximisation. The cost of addition of HEN is recoverable within a short payback period of about 2.8 years. In the second issue, optimal HEN operation considering range of uncertainties and disturbances in flowrates and inlet stream temperatures while minimizing utility consumption at constant target temperatures based on self-optimizing control (SOC) strategy. The new SOC method developed in this thesis is a data-driven SOC method which uses process data collected overtime during plant operation to select control variables (CVs). This is in contrast to the existing SOC strategies in which the CV selection requires process model to be linearized for nonlinear processes which leads to unaccounted losses due to linearization errors. The new approach selects CVs in which the necessary condition of optimality (NCO) is directly approximated by the CV through a single regression step. This work was inspired by Ye et al., (2013) regression based globally optimal CV selection with no model linearization and Ye et al., (2012) two steps regression based data-driven CV selection but with poor optimal results due to regression errors in the two steps procedures. The advantage of this work is that it doesn’t require evaluation of derivatives hence CVs can be evaluated even with commercial simulators such as HYSYS and UNISIM from among others. The effectiveness of the proposed method is again applied to the 3-streams HEN case study and also the HEN for coal-fired power plant with CO2 capture unit. The case studies show that the proposed methodology provides better optimal operation under uncertainties when compared to the existing model-based SOC techniques.
8

Online boiler convective heat exchanger monitoring: a comparison of soft sensing and data-driven approaches

Prinsloo, Gerto 07 May 2019 (has links)
Online monitoring supports plant reliability and performance management by providing real time information about the condition of equipment. However, the intricate geometries and harsh operating environment of coal fired power plant boilers inhibit the ability to do online measurements of all process related variables. A low-cost alternative lies in the possibility of using knowledge about boiler operation to extract information about its condition from standard online process measurements. This approach is evaluated with the aim of enhancing online condition monitoring of a boiler’s convective pass heat exchanger network by respectively using a soft sensor and a data-driven method. The soft sensor approach is based on a one-dimensional thermofluid process model which takes measurements as inputs and calculates unmeasured variables as outputs. The model is calibrated based on design information. The data-driven method is one developed specifically in this study to identify unique fault signatures in measurement data to detect and quantify changes in unmeasured variables. The fault signatures are initially constructed using the calibrated one-dimensional thermofluid process model. The benefits and limitations of these methods are compared at the hand of a case study boiler. The case study boiler has five convective heat exchanger stages, each composed of four separate legs. The data-driven method estimates the average conduction thermal resistance of individual heat exchanger legs and the flue gas temperature at the inlet to the convective pass. In addition to this, the soft sensor estimates the average fluid variables for individual legs throughout the convective pass and therefore provides information better suited for condition prognosis. The methods are tested using real plant measurements recorded during a period which contained load changes and on-load heat exchanger cleaning events. The cleaning event provides some basis for validating the results because the qualitative changes of some unmeasured monitored variables expected during this event are known. The relative changes detected by both methods are closely correlated. The data-driven method is computationally less expensive and easily implementable across different software platforms once the fault signatures have been obtained. Fault signatures are easily trainable once the model has been developed. The soft sensors require the continuous use of the modelling software and will therefore be subject to licencing constraints. Both methods offer the possibility to enhance the monitoring resolution of modern boilers without the need to install any additional measurements. Implementation of these monitoring frameworks can provide a simple and low-cost contribution to optimized boiler performance and reliability management.
9

Controle multivariável em redes de trocadores de calor com bypasses. / Multivariable control on a heat exchanger network with bypasses.

Delatore, Fabio 20 April 2011 (has links)
Atualmente, existe uma grande variedade de metodologias de controle que poderiam ser utilizadas e aplicadas a processos industriais. Algumas destas metodologias têm um projeto complexo, exigindo um estudo extra de engenharia para projetar um controlador com um desempenho excelente. Outros controladores não apresentam um desempenho tão bom, embora apresentem um projeto extremamente simples. Entre a mais simples e a mais complexa metodologia, existem soluções de controle intermediárias, baseadas nas teorias de controle ótimo, que apresentam uma relativa simplicidade de projeto combinada com um desempenho superior. A presente tese apresenta a aplicação de duas técnicas de controle aplicadas a uma Rede de Trocadores de Calor (RTC) com bypasses: o controle LQR (Regulador Linear Quadrático) e o controle H-Infinito, apresentando os resultados obtidos em simulação no Matlab/Simulink e também resultados experimentais. Além disso, foi desenvolvido um procedimento para a validação experimental de um modelo matemático do trocador de calor casco e tubo 1-1 proposto por NOVAZZI (2006). A obtenção dos resultados experimentais foi realizada através de uma RTC em escala piloto, projetada e construída no Laboratório de Engenharia Química do Centro Universitário da FEI, com a instrumentação necessária e devidamente interconectada a um computador PC através de uma placa de aquisição de dados. A simulação e os ensaios experimentais realizados com os controladores LQR e H-Infinito aplicados na RTC apresentaram resultados adequados quando comparados à dinâmica da RTC em malha aberta (600s.), pois exigiram em torno de 200s. para impor uma mudança de setpoint ou rejeitar os distúrbios aplicados na vazão fria e na temperatura quente de entrada. Além disso, os controladores foram capazes de eliminar as interações entre as variáveis de processo. / Nowadays, there are a lot of different control methodologies that could be used on industrial processes. Some of these methodologies have a complex design and also demands an extra engineering effort to design the controller with a superior performance. Some other controllers may not lead to a desirable performance although they are too easy to design. Midway between the simplest and the most complex controller designs, there are an intermediate solutions based on optimal control theory, that present a relative simplicity in design combined with a superior performance. The contribution of this work is to apply the LQR control (Linear Quadratic Regulator) and the H-Infinity control on a Heat Exchanger Network (HEN) with bypasses, presenting the simulations and the experimental results. An experimental validation of the shell and tube heat exchanger mathematical model was successfully developed based on a procedure proposed. The experimental results were obtained with an HEN assembled on the Chemical Engineering Laboratory located at Centro Universitario da FEI. The instrumentation was adequately performed and the signals were interconnected on PC computer by using a data acquisition card. The simulation and the experimental results with the LQR and the H-Infinity control demanded 200s. to achieve a new steady state hen disturbances or set point variation were applied on the HEN. Compared with the HEN setting time (600s.), the controllers demonstrated reasonable results to perform a disturbance rejection and a set point variation.
10

Controle multivariável em redes de trocadores de calor com bypasses. / Multivariable control on a heat exchanger network with bypasses.

Fabio Delatore 20 April 2011 (has links)
Atualmente, existe uma grande variedade de metodologias de controle que poderiam ser utilizadas e aplicadas a processos industriais. Algumas destas metodologias têm um projeto complexo, exigindo um estudo extra de engenharia para projetar um controlador com um desempenho excelente. Outros controladores não apresentam um desempenho tão bom, embora apresentem um projeto extremamente simples. Entre a mais simples e a mais complexa metodologia, existem soluções de controle intermediárias, baseadas nas teorias de controle ótimo, que apresentam uma relativa simplicidade de projeto combinada com um desempenho superior. A presente tese apresenta a aplicação de duas técnicas de controle aplicadas a uma Rede de Trocadores de Calor (RTC) com bypasses: o controle LQR (Regulador Linear Quadrático) e o controle H-Infinito, apresentando os resultados obtidos em simulação no Matlab/Simulink e também resultados experimentais. Além disso, foi desenvolvido um procedimento para a validação experimental de um modelo matemático do trocador de calor casco e tubo 1-1 proposto por NOVAZZI (2006). A obtenção dos resultados experimentais foi realizada através de uma RTC em escala piloto, projetada e construída no Laboratório de Engenharia Química do Centro Universitário da FEI, com a instrumentação necessária e devidamente interconectada a um computador PC através de uma placa de aquisição de dados. A simulação e os ensaios experimentais realizados com os controladores LQR e H-Infinito aplicados na RTC apresentaram resultados adequados quando comparados à dinâmica da RTC em malha aberta (600s.), pois exigiram em torno de 200s. para impor uma mudança de setpoint ou rejeitar os distúrbios aplicados na vazão fria e na temperatura quente de entrada. Além disso, os controladores foram capazes de eliminar as interações entre as variáveis de processo. / Nowadays, there are a lot of different control methodologies that could be used on industrial processes. Some of these methodologies have a complex design and also demands an extra engineering effort to design the controller with a superior performance. Some other controllers may not lead to a desirable performance although they are too easy to design. Midway between the simplest and the most complex controller designs, there are an intermediate solutions based on optimal control theory, that present a relative simplicity in design combined with a superior performance. The contribution of this work is to apply the LQR control (Linear Quadratic Regulator) and the H-Infinity control on a Heat Exchanger Network (HEN) with bypasses, presenting the simulations and the experimental results. An experimental validation of the shell and tube heat exchanger mathematical model was successfully developed based on a procedure proposed. The experimental results were obtained with an HEN assembled on the Chemical Engineering Laboratory located at Centro Universitario da FEI. The instrumentation was adequately performed and the signals were interconnected on PC computer by using a data acquisition card. The simulation and the experimental results with the LQR and the H-Infinity control demanded 200s. to achieve a new steady state hen disturbances or set point variation were applied on the HEN. Compared with the HEN setting time (600s.), the controllers demonstrated reasonable results to perform a disturbance rejection and a set point variation.

Page generated in 0.3148 seconds