• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 168
  • 146
  • 36
  • 25
  • 12
  • 9
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 465
  • 465
  • 203
  • 146
  • 145
  • 136
  • 118
  • 88
  • 83
  • 82
  • 80
  • 73
  • 70
  • 59
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Trimming of a ground source heat pump system in Saltsjöbaden

Garnier, Michel January 2014 (has links)
The real performance of ground source heat pumps systems are not precisely highlighted in most cases, especially when it comes to installations older than the contractors guarantee period of 5 years. This project analyses measured data, constructs durability diagrams and establishes an energy balance of a whole heating system located in Saltsjöbaden. The system, composed of 3 heat pumps with a total heating power of 270kW and an oil burner, is used to deliver comfort heat through radiators and ventilation as well as tap warm water production. The installation was originally designed with two oil burners now used as an auxiliary heat supplier. Two heat pumps were installed in 1999 and a third unit was added in 2009. However, the oil consumption has been higher than expected. An experiment with controlled oil burner operation confirmed the need of implementing a control strategy. Some weaknesses in the system are pointed out.
32

Techno-Economic Analysis of Solar Photovoltaic and Heat Pump Systems for a North Macedonian Hospital

Beltran, Francisco, Fisher, Lesley January 2019 (has links)
The International Energy Agency’s Global Status Report 2017 estimates that existing buildings must undergo deep energy renovations, which reduce the energy intensity of buildings by 50% - 70% in order to achieve the “Beyond 2°C” scenario [1]. Many buildings in Bitola, The Republic of North Macedonia, will need considerable upgrades to meet these goals. Among them, health care facilities and education centers have the greatest potential, with energy savings that could reach 35 to 40% [2]. PHI Clinical Hospital Bitola is the largest health care facility in the southwestern region of North Macedonia with a capacity of 500 beds, providing care to almost 300.000 patients annually. It has a heating system based on heavy fuel oil, and an inefficient distribution system which has not been upgraded since the 1970s. There is no centralized ventilation or cooling systems, making it necessary to open and close windows in order to regulate the indoor temperature and generate natural ventilation. This study aims to replace the use of heavy fuel oil (HFO), reduce building related GHG emissions, and increase the primary renewable energy fraction of PHI Clinical Hospital Bitola, by investigating a replacement energy system using heat pumps and solar energy. Special consideration is given to increasing the level of comfort of patients and improving the safety of the indoor environment. Space conditioning, domestic hot water, and electricity demands for three critical buildings are considered in Polysun over a 1-year period. The costs and benefits of technologies including air and ground source heat pumps, solar photovoltaics, and ice thermal energy storage are analyzed. It is determined which of these technologies can be implemented in an energy and cost-efficient manner in the Republic of North Macedonia, thus contributing to the reduction of building related greenhouse gas emissions and other pollutants that contribute to poor air quality. Ground source heat pumps perform superior to air source heat pumps, however, the total life cycle costs of ground source heat pump systems are much higher than air source heat pump systems, making the marginal gains in the technical performance not worth the investment in a borehole field. When using ice thermal energy storage within the cooling and domestic hot water systems the benefits of improved heat pump performance and reduced electricity consumption are not observed. The configuration of thermal storage tested here uses the domestic hot water system to withdraw heat from the thermal storage tank, creating ice, which is then used to decrease the need for cooling using the chiller. However, the cooling load is much larger than the hot water demand, and so any ice generated in the tank is depleted within the first few days of cooling. Many other configurations and control strategies for thermal storage exist which could be the subject of further research. When selecting a renewable energy system that could replace the current HFO boiler in the hospital, the results of this study suggest that an air source heat pump system with solar PV is the recommended solution. For buildings 1 and 2, the final results achieved a primary renewable energy fraction of 62%, a GHG emissions savings of 840 tons of CO2eq equating to a 26% reduction, coming at a capital cost of nearly 2,7 million €, and reducing annual energy expenses by 47%. For building 4 the final system delivers a primary renewable energy fraction of 64%, GHG emissions savings of 109 tons CO2eq or 17%, while costing 0,67 million € in capital expenses and lowering annual energy expenses by 50%. / Den internationella energi byråns globala status rapport 2017 uppskattar att existerande byggnader måste undergå djupgående energi renovationer, som ska reducera byggnadernas energiintensitet med 50% - 70% för att uppnå i scenariot “Beyond 2°C” [1]. Många byggnader i Bitola (Republiken av nora Makedonien), kommer att behöva betydande uppgraderingar för att uppfylla dessa mål. Bland dem har hälsovårdsanläggningar och utbildningscenter den största potentialen, med energi besparingar där dessa kan uppnå 35% till 40% [2]. PHI Kliniskt Sjukhus Bitola är den största sjukvårdsanläggningen i den sydvästra regionen av Nora Makedonien med en kapacitet på 500 sängplatser, som ger vård till nästan 300.000 patienter årligen. Det nuvarande värmesystemet är baserat på tung eldningsolja och ett ineffektivt distributionssystem som inte har uppdaterats sedan 1970-talet. Det finns inga centraliserade ventilations- och kylsystem, vilket gör det nödvändigt att öppna och stänga fönster för att reglera inomhustemperaturen och generera naturlig ventilation. Denna studie syftar till att ersätta användningen av tung eldningsolja, minska byggnadsrelaterade växthusutsläpp och öka den primära förnyelsebara energifraktionen av Kliniskt Sjukhus Bitola. Genom att undersöksöka ett ersättande energisystem med värmepumpar och solenergi. Särskild hänsyn tas till öka patienternas komfort och förbättra säkerheten i inomhusmiljön. Värme och kyla, varmvatten och el-krav för tre kritiska byggnader betraktas i Polysun under en 1- års period. Kostnaderna och fördelarna med tekniken inklusive luft och markvärmepumpar, solceller och termisk energilagring analyseras. Det fastställs vilken av dessa tekniker som kan implementeras på ett energi- och kostnadseffektivt sätt i Republiken av nora Makedonien, vilket bidrar till att minska byggnadsrelaterade växthusgasutsläpp och andra föroreningar som kan bidra till dålig luftkvalitet. Markvärmepumpar har högre prestanda än luftvärmepumpar, men de totala livscykelkostnaderna för ett markvärmepumpsystem är mycket högre än för ett luftvärmepumpsystem. Vilket gör den marginella vinsterna för den tekniska prestandan inte värda investeringen av ett borrhåls fält. Vid användning av is som termisk energilagring och kylning och varmvattensanläggningar, tog ingen hänsyn till fördelarna med en förbättrad värmepumps prestanda och minskad elförbrukning. Konfigurationen av termisk lagring som testas här använder det inhemska varmvattensystemet för att ta bort värme från den termiska lagringstanken, vilket skapar is som sedan används för att minska behovet av nedkylning av byggnaden. Kylbelastningen är emellertid mycket större än varmvattenbehovet. Vilket betyder att all is som genereras i tanken används upp efter några dagar av kylning. Många andra konfigurationer och styrstrategier för termisk lagring finns och kan vara till ändamål för framtida forskning. När val av ett förnybart energisystem görs som ska kunna ersätta den nuvarande tung eldningsolja pannan på sjukhuset antyder resultatet av denna studie att ett värmepumpsystem med luftkälla och sol-PV är den rekommenderade lösningen. För byggnad 1 och 2 uppnådde det slutliga resultatet en primär förnyelsebar energifraktion på 62%, vilket skulle innebära en besparing av växthusgasutsläpp med 840 ton CO2 ekvivalenter. Vilket motsvarar en minskning med 26%, med en kapitalkostnad på nästan 2,7 miljoner €. Samt minskade årliga energikostnader med 47%. För byggnad 4 levererar det slutliga systemet en primär förnybar energifraktion på 64%, med en -5- besparing av växthusutsläpp på 109 ton CO2 ekvivalenter eller 17%. Medan det kostar 0,67 miljoner € i kapitalutgifter och sänker den årliga energikostnaden med 50%.
33

Theoretical and experimental analysis of supercritical carbon dioxide cooling / Paul Marius Harris

Harris, Paul Marius January 2014 (has links)
With on-going developments in the field of trans-critical carbon dioxide (R-744) vapour compression cycles, a need to effectively describe the heat transfer of supercritical carbon dioxide for application in larger diameter tube-in-tube heat exchangers was identified. This study focuses on the in-tube cooling of supercritical carbon dioxide for application in the gas cooler of a trans-critical heat pump. A literature study has revealed Nusselt number correlations specifically developed for the cooling of supercritical carbon dioxide. These correlations were proven to be accurate only for certain operating conditions and tube geometries. A shortcoming identified in the reviewed literature was a generic heat transfer correlation that can be applied over a wide range of fluid conditions for supercritical carbon dioxide cooling. The objective of this study was to compare experimental data obtained from a trans-critical heat pump with different Nusselt number correlations available in literature. The experimental tube diameter used for this study (16mm), was considerably larger than the validated tube diameters used by the researchers who developed Nusselt number correlations specifically for the supercritical cooling of carbon dioxide. The experimental Reynolds number (Re) ranges (350’000 - 680’000) were very high compared to the studies found in the literature (< 300’000), due to the test section from this study forming part of a complete heat pump cycle. Experimental results showed that correlations specifically developed for supercritical carbon dioxide cooling generally over-predicts experimental Nusselt numbers (Nuexp) with an average relative error of 62% to 458% and subsequently also over-predicts the convection heat transfer coefficient. Furthermore, generic heat transfer correlations were compared to the experimental results which over-predicted the Nuexp with an average relative error between 20% and 45% over the entire Re number range. More specifically, the correlation by Dittus & Boelter (1985) correlated with an average relative error of 9% for 350’000 < Re < 550’000. From the results of this study it was concluded that cooling heat transfer of supercritical carbon dioxide in larger tube diameters at higher Re numbers is more accurately predicted by the generic Dittus & Boelter (1985) and Gnielinski (1975) correlations mainly due to the absence of thermo-physical property ratios as seen in the CO2-specific correlations. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
34

Theoretical and experimental analysis of supercritical carbon dioxide cooling / Paul Marius Harris

Harris, Paul Marius January 2014 (has links)
With on-going developments in the field of trans-critical carbon dioxide (R-744) vapour compression cycles, a need to effectively describe the heat transfer of supercritical carbon dioxide for application in larger diameter tube-in-tube heat exchangers was identified. This study focuses on the in-tube cooling of supercritical carbon dioxide for application in the gas cooler of a trans-critical heat pump. A literature study has revealed Nusselt number correlations specifically developed for the cooling of supercritical carbon dioxide. These correlations were proven to be accurate only for certain operating conditions and tube geometries. A shortcoming identified in the reviewed literature was a generic heat transfer correlation that can be applied over a wide range of fluid conditions for supercritical carbon dioxide cooling. The objective of this study was to compare experimental data obtained from a trans-critical heat pump with different Nusselt number correlations available in literature. The experimental tube diameter used for this study (16mm), was considerably larger than the validated tube diameters used by the researchers who developed Nusselt number correlations specifically for the supercritical cooling of carbon dioxide. The experimental Reynolds number (Re) ranges (350’000 - 680’000) were very high compared to the studies found in the literature (< 300’000), due to the test section from this study forming part of a complete heat pump cycle. Experimental results showed that correlations specifically developed for supercritical carbon dioxide cooling generally over-predicts experimental Nusselt numbers (Nuexp) with an average relative error of 62% to 458% and subsequently also over-predicts the convection heat transfer coefficient. Furthermore, generic heat transfer correlations were compared to the experimental results which over-predicted the Nuexp with an average relative error between 20% and 45% over the entire Re number range. More specifically, the correlation by Dittus & Boelter (1985) correlated with an average relative error of 9% for 350’000 < Re < 550’000. From the results of this study it was concluded that cooling heat transfer of supercritical carbon dioxide in larger tube diameters at higher Re numbers is more accurately predicted by the generic Dittus & Boelter (1985) and Gnielinski (1975) correlations mainly due to the absence of thermo-physical property ratios as seen in the CO2-specific correlations. / MIng (Mechanical Engineering), North-West University, Potchefstroom Campus, 2014
35

Model-based Assessment of Heat Pump Flexibility

Wolf, Tobias January 2016 (has links)
Today's energy production is changing from scheduled to intermittent generation due to the increasing energy injection from renewable sources. This alteration requires flexibility in energy generation and demand. Electric heat pumps and thermal storages were found to have a large potential to provide demand flexibility which is analysed in this work. A three-fold method is set up to generate thermal load profiles, to simulate heat pump pools and to assess heat pump flexibility. The thermal profile generation based on a combination of physical and behavioural models is successfully validated against measurement data. A randomised system sizing procedure was implemented for the simulation of heat pump pools. The parameter randomisation yields correct seasonal performance factors, full load hours and average operation cycles per day compared to 87 monitored systems. The flexibility assessment analysis the electric load deviation of representative heat pump pool in response to 5 different on / off signals. The flexibility is induced by the capacity of thermal storages and analysed by four parameters. Generally, on signals are more powerful than off signals. A generic assessment by the ambient temperature yield that the flexibility is highest for heating days and the activated additional space heating storage: Superheating of the storage to the maximal temperature provides a flexible energy of more than 400 kWh per 100 heat pumps in a temperature range between -10 and +13 °C.
36

Increasing the value of household appliances by adding a heat pump system

Bengtsson, Peder January 2014 (has links)
Historically, domestic tasks such as preparing food and washing and drying clothes and dishes were done by hand. In a modern home many of these chores are taken care of by machines such as washing machines, dishwashers and tumble dryers. When the first such machines came on the market customers were happy that they worked at all! Today, the costs of electricity and customers’ environmental awareness are high, so features such as low electricity, water and detergent use strongly influence which household machine the customer will buy. One way to achieve lower electricity usage for the tumble dryer and the dishwasher is to add a heat pump system. The function of a heat pump system is to extract heat from a lower temperature source (heat source) and reject it to a higher temperature sink (heat sink) at a higher temperature level. Heat pump systems have been used for a long time in refrigerators and freezers, and that industry has driven the development of small, high quality, low price heat pump components. The low price of good quality heat pump components, along with an increased willingness to pay extra for lower electricity usage and environmental impact, make it possible to introduce heat pump systems in other household products. However, there is a high risk of failure with new features. A number of household manufacturers no longer exist because they introduced poorly implemented new features, which resulted in low quality and product performance. A manufacturer must predict whether the future value of a feature is high enough for the customer chain to pay for it. The challenge for the manufacturer is to develop and produce a high-performance heat pump feature in a household product with high quality, predict future willingness to pay for it, and launch it at the right moment in order to succeed. Tumble dryers with heat pump systems have been on the market since 2000. Paper I reports on the development of a transient simulation model of a commercial heat pump tumble dryer. The measured and simulated results were compared with good similarity. The influence of the size of the compressor and the condenser was investigated using the validated simulation model. The results from the simulation model show that increasing the cylinder volume of the compressor by 50% decreases the drying time by 14% without using more electricity.  Paper II is a concept study of adding a heat pump system to a dishwasher in order to decrease the total electricity usage. The dishwasher, dishware and water are heated by the condenser, and the evaporator absorbs the heat from a water tank. The majority of the heat transfer to the evaporator occurs when ice is generated in the water tank. An experimental setup and a transient simulation model of a heat pump dishwasher were developed. The simulation results show a 24% reduction in electricity use compared to a conventional dishwasher heated with an electric element. The simulation model was based on an experimental setup that was not optimised. During the study it became apparent that it is possible to decrease electricity usage even more with the next experimental setup.
37

Finite element modelling of thermal piles and walls

Rui, Yi January 2015 (has links)
No description available.
38

Experimental and computational study of indirect expansion solar assisted heat pump system with latent heat storage for domestic hot water production

Youssef, Walid Mohamed Khalil Abdalla January 2017 (has links)
Solar assisted heat pump (SAHP) systems have been widely applied in domestic hot water (DHW) production due to their sustainability and stability in operations. However, their performance efficiency requires further improvement using advanced technologies such as energy storage with phase change materials (PCM) and optimal system controls. Undoubtedly, employing PCMs for latent heat storage (LHS) application has a great potential to improve a solar thermal application performance. Despite this fact, the use of PCM in this area is quite limited due to the poor thermal conductivity of available PCMs. Therefore, heat transfer enhancement is one of the essential strategies that can overcome this obstacle. Accordingly, a test rig of a new indirect expansion solar assisted heat pump (IDX-SAHP) system has been designed, built and instrumented. The system can handle heating capacity up to 9 kW. The IDX-SAHP system consists of three operational loops: solar thermal, solar-air assisted heat pump and load profile. A 2 kW PCM heat exchanger (HX) was purposely designed and installed in the system solar thermal loop to store solar energy, when applicable, and release heat when required by the heat pump. The PCM HX is employed with a novel heat transfer enhancement method. The maximum coefficient of performance (COP) of the IDX-SHAP system reached 4.99 during the sunny day with the PCM (HX) integration. However, the maximum energy saving was achieved during the cloudy day with the PCM HX integration. Moreover, the proposed heat transfer enhancement method has been modelled through CFD package and validated with the experimental results. This allows a clear understanding of the reasons for the longer discharging process compared with the charging process. Furthermore, the inlet flow rate and temperature variation of the PCM HX was simulated during charging and discharging processes. The optimum inlet flow rate for this application was found at 0.1 kg/s while the optimum inlet temperature was found at 40°C. Meanwhile, the whole system was modelled by the coupling of TRNSYS, EES and CFD to investigate the potential and advantages of using the system in locations with rich solar intensity such as Cairo and Madrid. The simulation shows that the solar thermal operation loop was called more frequently in these locations. This had a significant impact on the system energy consumption, especially during winter. The maximum COP and solar performance factor (SPF) of the modelled system were 5.3 and 0.83 respectively.
39

Operational performance assessment of decentralised energy and district heating systems

Martin-Du Pan, Oliver January 2015 (has links)
District heating systems can contribute to reducing the UK's CO2 emissions. This thesis investigates the operational performance of current district heating (DH) systems with the existing and a possible future energy sector. The main contributions to knowledge are:  Operational, financial and exergy performance assessments of three functioning DH systems and one decentralised energy (DE) technology  A methodology to optimise a DH system in a resource efficient and cost effective way The aims of DH systems are to provide heat, reduce CO2 emissions, ensure energy security by operating in a resource efficient way and to tackle fuel poverty. However, the case studies in this project confirm that DH systems operate poorly in the UK. This is largely because of the heat losses from the DH network to the soil being high and the plant operation being suboptimal. Four case studies were analysed. The 785 room Strand Palace hotel has two 250 kWe combined heat and power (CHP) engines set to modulate following the hotel's electricity consumption and providing approximately 90% of this annual demand. It was found that the CHP engines never operate at full load throughout a full day, firstly because the plant cannot export electricity to the grid and secondly the system is not fitted with a thermal store. Financial analysis revealed that the hotel does not reduce its heating cost by operating the CHP engines, but that the energy service company (ESCo) makes £77,000 net operating income per year. Elmswell in Suffolk (UK) is a low heat density DH system that generates heat with a 2008 biomass boiler and pumps it to 26 terraced and semi-detached dwellings. It was found that 39% of its heat is lost to the soil and that the natural gas boiler generates 45% of the heating load and operates with a seasonal efficiency of 65%. The heat losses to the soil for this system were compared to a DH system of higher heat density, Loughborough University, with a lower heat loss of 22% to the soil. In August 2011, Loughborough University installed a 1.6 MWe CHP engine to operate with four 3 MWth natural gas boilers to supply heat to its DH network. A study undertaken demonstrated that by adding a 2 MWe CHP engine with a thermal storage instead of a 1.6 MWe CHP engine on its own could further increase the CO2 emissions savings from 8% to 12.4%. The energy centre at Pimlico District Heating Undertaking (PDHU) includes a gas fired cogeneration plant that supplies heat to 3 schools, 3,256 dwellings and 55 commercial units. It also benefits from a 2,500 m3 thermal store. Every component of PDHU was investigated in detail and its current operation was optimised and compared to a selection of new operating scenarios. It was found that: i) The thermal store operated with 93% thermal efficiency and was not used to reduce the energy consumption or to enable more cogeneration, ii) The CHP engines were undersized and generated only 18% of the required heat in 2012, iii) The boilers modulate and £ 70,000 could be saved per year by setting them to operate at full load by making use of the thermal store, iv) By installing an open-loop heat pump using the river Thames, PDHU could then guarantee to comply with current and likely future policies impacts by setting the energy plant to operate in CHP mode or as an electricity consumer at defined times to benefit from low energy utility costs and to minimise CO2 emissions. A comparison of selected performance metrics was then undertaken and it was found that none of the three DH systems operate in a resource efficient way and that the heating cost could be reduced further by optimising the operation of the systems. To do this, a new optimisation methodology is proposed by maximising their exergy efficiency in addition to maximising their overall energy efficiency and CO2 emissions reduction.
40

REDUCTION OF THE COSTS IN A HOUSE IN VALBO THAT USES ELECTRICITY AS ENERGY SOURCE : Study of the installation of a heat pump or connection to the district heating

OrdeÑana, Ianire January 2008 (has links)
<p>The analyzed building in this project is located in Valbo, 9016 Stiftelsev 6. This house is a property of Gavlegårdarna, and it is being used as a house for disabled people. The building consists on five apartments, with one patient in each apartment. Some social workers help those patients in everything they need, making their living in the house as easy as possible.</p><p>The aim of this project is to find out the best option of reducing the energy consumption in this house. There are some alternatives to reduce the energy or the energy costs as; efficiency measures, load management and energy conversion.</p><p>This project is focused on the energy conversion for reducing the energy consumption. As it is the best option for obtaining a considerable reduction in the annual costs.</p><p>First of all the energy balance of the house is analyzed. By studying the energy balance it is possible to find out how the energy consumption of the house is divided. On one hand there is the heat supplied and on the other hand the heat losses.</p><p>As it was said before this project is focused in the reduction of the energy consumption by means of converting to another energy supplying method. Two alternatives have been studied: the installation of a heat pump and the connection to the district heating of Gävle.</p>

Page generated in 0.0764 seconds