101 |
Système intégré de rafraîchissement d’air pour le bâtiment à base de matériaux à changement de phase / Air-cooling integrated system in building using phase change materialRouault, Fabien 10 April 2014 (has links)
Les systèmes de rafraîchissement d'air basés sur des échangeur-stockeurs composés de Matériaux à Changement de Phase (MCP) sont une alternative possible aux systèmes de climatisation pour le confort d'été dans les bâtiments. Toutefois, les performances de tels systèmes de rafraîchissement sont étroitement liées aux conditions climatiques et aux configurations des bâtiments à rafraîchir. L'objectif de ce travail de thèse est de développer un outil d'aide à la conception permettant un pré-dimensionnement optimal de systèmes de rafraîchissement d'air utilisant des MCP dès le stade de la conception préliminaire. Un modèle thermique dynamique simulant le comportement d'un échangeur-stockeur air/MCP est donc développé puis couplé à une plateforme logicielle de simulation thermique dynamique du bâtiment. Les modèles d'échangeur-stockeurs et de co-simulation sont validés à l'aide d'expériences menées sur deux prototypes d'échangeur-stockeur et la plateforme expérimentale de maison à énergie positive NAPEVOMO. Enfin un premier outil d'aide à la conception utilisant un algorithme d'optimisation est développé pour définir une configuration optimale de système maintenant le confort estival dans la maison NAPEVOMO. / Air-cooling systems using latent heat thermal energy storage (LHTES) are potential alternatives to air-conditioners for summer climate control in buildings. However, the performances of such systems are tightly linked to weather conditions and the configuration of the building to be cooled. The aim of this doctoral work is to develop a design support tool allowing optimally dimensioning an air-cooling system using phase change material at the preliminary design stage. A dynamic thermal model, simulating the behaviour an LHTES device exchanging with air, is developed and coupled with a building performance program. The LHTES and the co-simulation models are validated by comparison with experiments carried out on two prototypes of LHTES device and the experimental platform of zero energy building NAPEVOMO. Finally, a first design support tool using genetic algorithm is developed to define the optimal configuration of an air-cooling system for the summer comfort in « NAPEVOMO » house.
|
102 |
Stockage thermochimique de la chaleur : étude de la sorption d’eau par différents matériaux / Thermochemical heat storage : study of the water sorption properties of different materialsJabbari-Hichri, Amira 15 December 2015 (has links)
Le défi énergétique imposé par l’épuisement des énergies fossiles d’une part et par leur consommation croissante d’autre part, a favorisé l’apparition d’une gestion optimale de l’énergie basée sur l’utilisation de ressources propres et renouvelables telles que l’énergie solaire. Le secteur du bâtiment est le principal consommateur d’énergie. Une grande partie de cette énergie est consommée par les systèmes de chauffage. Par conséquent, une bonne gestion peut être réalisée grâce à l’utilisation des technologies de stockage thermochimique d’énergie. L’avantage principal d’utiliser ce type de système est la possibilité de stocker de la chaleur pendant la période de disponibilité maximale du rayonnement solaire, en été (étape de déshydratation) et la libérer pour chauffer une maison pendant la période hivernale (étape d’hydratation). L’amélioration des propriétés d’adsorption des matériaux pour le stockage thermochimique de la chaleur est l’objectif principal de ce travail. L’utilisation d’adsorbants poreux tels que les zéolithes dans le domaine du stockage saisonnier de la chaleur s’avère être une solution intéressante pour la réduction de la consommation d’énergie. Par ailleurs, le développement de nouveaux matériaux composites à base d’hydrate de sel a été étudié pour améliorer les capacités de stockage à la fois des matrices mésoporeuses et des hydrates salins. Une comparaison entre les différentes séries de matériaux de stockage thermochimiques sélectionnés et synthétisés a été réalisée, concernant l’impact de la nature et de la quantité de sel ajouté et des propriétés physicochimiques des matériaux poreux sur leurs densités de stockage de chaleur et leurs capacités de sorption d’eau. Afin de mieux comprendre le comportement d’adsorption-désorption, les différents types de matériaux de stockage sélectionnés ont été caractérisés d’un point de vue structural et textural en utilisant des techniques appropriées et par adsorption de la vapeur d’eau en utilisant un analyseur thermique TG-DSC 111 de Setaram. Des cycles successifs d’hydratation (à 20°C) / déshydratation (à 150°C) ont été effectués / The energy challenge imposed by exhaustion of fossil fuels and their increasing consumption has favored the emergence of optimal energy management based on the use of alternative resources such as solar energy. The household sector is the main consumer of energy. A large part of this energy is consumed by heating systems. Therefore, good management can be achieved through the use of thermochemical energy storage technology. The main advantage to use this type of system is the possibility to store heat during the maximum availability of solar radiation in summer (dehydration step) and release the energy on demand for heating houses in winter (hydration step). The improvement of the adsorption properties of materials for thermochemical heat storage is the main objective of this work. The use of porous adsorbents such as zeolites in the field of seasonal heat storage is an attractive solution for the reducing of energy consumption. On the other hand, the development of new composite materials based on hydrate salt is made to improve the heat storage capacities of both pure mesoporous host matrix and hydrate salt. A comparison among different series of thermochemical storage materials selected and synthesized was done by analyzing the impact of salt addition and physico-chemical properties of porous materials on the heat storage and water sorption performances. In order to understand the adsorption-desorption behavior, different kinds of materials were characterized in their structural, textural and surface properties by using appropriate techniques and by adsorption of water vapor using a Setaram TG-DSC 111 apparatus. Successive cycles of hydration (at 20°C) / dehydration (at 150 °C) were performed
|
103 |
Experimental and numerical study of metal foam composites in innovative application of thermal energy storage / Etude expérimentale et numérique des mousses métalliques composites dans une application d'énergie thermiqueZhu, Feng 16 March 2017 (has links)
L'objectif de cette thèse de doctorat est d'étudier expérimentalement et numériquement le comportement thermique des mousses d'aluminium et des matériaux à changement de phase (MCP), présentés sous la forme d’un composite, afin de connaître le phénomène de stockage d’énergie thermique dans ces matériaux. Le procédé de fabrication de la mousse d'aluminium à cellules ouvertes est d’abord analysé numériquement dans le but de réduire les défauts formés durant la fabrication. Les caractéristiques de transfert de chaleur du MCP dans les mousses d'aluminium comportant différentes porosités sont ensuite étudiées en analysant les processus de fusion et la variation de températures dans ces composites. Deux modèles numériques pour la mousse d'aluminium à faible et à haute porosité sont établis afin d’évaluer la performance de stockage d'énergie des composites. Les résultats montrent que la mousse d'aluminium peut améliorer considérablement la performance de transfert de chaleur du MCP en raison de sa conductivité thermique élevée. La performance de stockage d'énergie dépend fortement de la porosité des mousses d'aluminium. Une porosité optimisée met en évidence cette performance et l’amélioration du comportement thermique. La dernière partie de la thèse porte sur une structure améliorée de la mousse par rapport à la structure uniforme: Association de l’ailette métallique et du gradient de porosité de la mousse. Cette nouvelle structure donne ainsi une performance de stockage d'énergie encore meilleure surtout dans le cas d’une source de chaleur isotherme / The objective of this Ph.D. thesis is to study the thermal behavior of the aluminum foam and phase change material (PCM) composite by both experimental and numerical methods in order to know the phenomena of storage of thermal energy in these materials. The manufacturing process of open-cell aluminum foam is firstly analyzed numerically to reduce the manufacturing defects in the samples. The heat transfer characteristics of PCM embedded in aluminum foams with different porosities are then investigated by analyzing the melting processes and the temperature variations in the composites. Two numerical models for low and high porosity aluminum foam are established to evaluate the energy storage performance of the composites. The results show that the aluminum foam can greatly improve the heat transfer performance in PCM due to its high thermal conductivity. The energy storage performance depends strongly on the porosity of the aluminum foam/PCM composite. An optimized porosity highlights this performance and improves the thermal behavior. The last part of this thesis proposes an improved structure of aluminum foam with respect to the uniform structure: Association of the metal fin and the foam with graded porosity. This new structure possesses a better energy storage performance especially in the case of the isothermal heat source
|
104 |
Rock cavern as thermal energy storageBerglund, Simon January 2020 (has links)
In the fall of 2019, a comprehensive idea study was conducted on heat storage in two rock caverns located at Näsudden in Skelleftehamn and was part of the project course "Energiteknik, huvudkurs" at Luleå University of Technology. This idea study investigated the conditions of using waste heat from Boliden AB:s copper smeltery (Rönnskär) and storing this waste heat in two rock caverns and use them as seasonal thermal storage tanks, with the purpose of using the heat in the nearby district heating network, thus replacing some of the oil burned at Rönnskär. To investigate this, the authors of the idea study looked at two different storage cycles of seasonal storage and modeled this in ANSYS Fluent to simulate the heat storage and the heat losses. The results from this idea study showed promising results for using these caverns as heat storage and this work is therefore a continuation of the idea study. Since the study provided a good understanding of the conditions for seasonal storage, some questions arose about how the rock caverns will behave during an intermittent operation, which is the planned mode of operating the caverns in case of deployment. In this thesis, intermittent operation of these caverns are explored and how this effects the temperature in the caverns and its surrondings, the charge/discharge speed, how insulated walls affect the operation and how much oil is replaced. At the beginning of this project a review of the idea study and similar projects was done to gain deeper knowledge about the subject, but also to get a wider grasp on the different problems that could arise during the thesis. Relevant data for the caverns was collected and acquired to get a deeper understanding of its geometry, layout and what kind of modifications are really possible. Further data from the district heating networks of Boliden AB and Skellefteå Kraft was acquired. The available waste heat from Rönnskär was examined and used to calculate the chargeable energy by hour for the caverns, with the limits of Skelleftehamn district heating network in mind. By examining the different steam boiler patterns, the discharge pattern could be calculated. Using CFD, the unknown global heat transfer coefficient between the cavern water and the cavern wall can be determined. This data was then used with a set of differential equations to model the behavior of the caverns in Simulink. This allowed to determine the behavior for the caverns during normal operation, such as how the heat losses evolve, how the temperatures fluctuate, how much heat the caverns can be charged with and how much they can discharge. The results from the simulations showed that the caverns discharge a higher amount of energy when operating intermittently than when operating seasonally. Depending on how the caverns are utilized, different amounts of discharged energy are obtained. This range from 2224,7MWh to 7846,1MWh for the different discharging patterns. The usage also affects the efficiency of the cavern giving the efficiency a range between 19% to 53,9%. The heat losses range from around 20kW to 1000kW, depending on operation. Insulating the cavern walls reduces on average the heat losses by a factor of 5. Operating the caverns intermittently would on average remove a total of 29 ktonne CO2 and 88,74 tonne NOx for its expected lifespan of 30 years. Economically, the rock caverns have good economic potential as they would save about 80 million SEK during their lifetime just from buying less oil. / Hösten 2019 genomfördes en omfattande idéstudie om värmelagring i två bergrum vid Näsudden i Skelleftehamn och var en del av projektkursen "\textit {Energiteknik, huvudkurs}" vid Luleå tekniska universitet. Denna idéstudie undersökte villkoren för att använda spillvärme från Boliden AB:s kopparsmältverk (Rönnskär) och lagra denna värme i bergrummen och använda dem som säsongslagrade ackumulatortankar. Syftet med detta var att använda värmen i det närliggande fjärrvärmenätverket och därmed ersätta en del av den förbrända oljan hos Rönnskär. Författarna utforskade detta genom att undersöka två olika lagringscykler för säsongslagring och modellerade detta i ANSYS Fluent för att simulera värmelagring och värmeförluster. Resultaten från idéstudien visade lovande resultat för säsongsbaserad värmelagring i dessa bergrum och detta arbete är därför en fortsättning av idéstudien. Eftersom studien gav en god förståelse för förhållandena för säsongslagring, uppstod några frågor om hur bergrummen kommer att bete sig under en intermittent drift, vilket är den planerade driften av bergrummen vid en framtida användning. I detta projekt undersöks intermittent drift av dessa bergrum och hur detta påverkar temperaturen i bergrummen och dess omgivning, laddnings- / urladdningshastigheten, hur isolerade väggar påverkar driften och hur oljeförbrukningen reduceras. I början av detta projekt gjordes en genomgång av idéstudien och liknande projekt för att få djupare kunskap om ämnet, men också för att få ett bredare grepp om de olika problem som kan uppstå under arbetets gång. Relevant data för bergrummen samlades in och anskaffades för att få en djupare förståelse för dess geometri, layout och vilken typ av ändringar som verkligen är möjliga. Ytterligare data från fjärrvärmenätverket för Boliden AB och Skellefteå Kraft förvärvades. Den tillgängliga spillvärme från Rönnskär undersöktes och användes för att beräkna den urladdningsbara energin per timme för bergrummen, med begränsningarna i Skelleftehamns fjärrvärmenät i åtanke. Genom att undersöka de olika ångpannmönstren kan urladdningsmönstret beräknas. Med hjälp av CFD kan den okända globala värmeöverföringskoefficienten mellan bergrumsvattnet och bergväggen bestämmas. Denna data användes sedan med en uppsättning differentialekvationer för att modellera driften av bergrummen i Simulink. Detta gjorde det möjligt att bestämma beteendet för bergrummen under normal drift, till exempel hur värmeförlusterna utvecklas, hur temperaturen fluktuerar, hur mycket värme bergrummen kan laddas med och hur mycket de kan ladda ur. Resultaten från simuleringarna visade att bergrummen kan ladda ur en större mängd energi än vid en säsongsbetonad drift. Beroende på hur grottorna utnyttjas erhålls olika mängder urladdad energi. Detta sträcker sig från 2224,7MWh till 7846,1MWh för de olika urladdningsmönstren. Användningen påverkar också grottans effektivitet vilket ger en effektivitet mellan 19% och 53,9%. Värmeförlusterna sträcker sig från cirka 1000 kW till 20kw, beroende på drift. Isolering av bergväggarna minskar i genomsnitt värmeförlusten med en faktor 5. Att använda grottorna intermittent skulle i genomsnitt ersätta totalt 29 kton CO2 och 88,74 ton NOx för den förväntade livslängden på 30 år. Bergrummen har även god ekonomisk potential eftersom de skulle spara cirka 80 miljoner SEK under sin livstid bara från minskade oljekostnader.
|
105 |
Optimalizace metaheuristikami v Pythonu pomocí knihovny DEAP / Optimization by means of metaheuristics in Python using the DEAP libraryKesler, René January 2019 (has links)
{This thesis deals with optimization by means of metaheuristics, which are used for complicated engineering problems that cannot be solved by classical methods of mathematical programming. At the beginning, choosed metaheuristics are described: simulated annealing, particle swarm optimization and genetic algorithm; and then they are compared with use of test functions. These algorithms are implemented in Python programming language with use of package called DEAP, which is also described in this thesis. Algorithms are then applied for optimization of design parameters of the heat storage unit.
|
106 |
Větrání a vytápění průmyslové haly / Ventilation and heating of an industrial buildingŠvábenský, Jiří January 2008 (has links)
The goal of this diploma thesis is suggest solution of ventilation and heating of industrial building. The solution is primarily based on calculation of thermal losses and thermal gains of the building. The project deals with supply of air for individual parts of construction in summer and winter. The solution consist of proposal of ducting and calculation of air handling units and unit heaters. The system of ventilation and heating is process in drawing documentation.
|
107 |
Akumulace elektrické energie z OEZ / Power accumulation from renewable energy sourcesKratschmer, Bruno January 2013 (has links)
In this thesis I deal with problem of power acumulation from renewable energy sources. First part present the available technologies used for power accumulation. In the second part is designed the systém of acumulation in compressed air with a transformation electric output 1 MW, when is used made elektricity from wind-power plant. In the third part is an assessment in terms of both technical and economic comparison with the use of electicity from the network.
|
108 |
Návrh a optimalizace zdroje tepla pro hotelový komplex / Design and optimization of a heat source for resortValek, Ondřej January 2016 (has links)
This Master’s thesis deals with design of heating source and heating system in the model object. Design is based on three variants of sources and heating systems. The first option is a heating pump air/water, the second option is pellet boiler and the third option is heating pump ground/water. At first heating losses are determined. Then heating systems and related heating sources are designed. The fundamental part of these free options is a design of alternative source for central heat and and hot water and heat storage. The last part is comparison of all variants.
|
109 |
Vliv tepelné vodivosti na efektivitu akumulace tepla / The effect of thermal conductivity on the heat storage efficiencySteidl, Martin January 2016 (has links)
The diploma thesis is focused on the dependence of heat storage on thermal conductivity, which is characterized by the thermal conductivity coefficient. Two basic materials were chosen for the measurements – universal plaster mixture and gypsum plaster. The thermal conductivity of the materials was increased by adding milled graphite powder, which conducts the heat very well. The taken samples were then examined for differences in the behaviour in the non-stationary thermal field and thermal-technical parameters – the specific heat capacity and the thermal conductivity coefficient – were determined.
|
110 |
Aluminum foams composite : elaboration and thermal properties for energy storage / Mousses d’aluminium composites : élaboration et propriétés thermiques pour le stockage d’énergieZhang, Chuan 07 July 2017 (has links)
L'objectif de cette thèse est d'étudier et d'optimiser le processus de fabrication des mousses métalliques et le comportement thermique du matériau de la mousse d'aluminium/matériau de changement de phase (MCP) par des méthodes expérimentales et numériques. Le processus d’élaboration de la mousse d’aluminium à pore ouvert est développé et optimisé pour contrôler précisément les paramètres de fabrication. Deux modèles de mousse d'aluminium à haute porosité (MAHP)/MCP composite et à faible porosité (MALP)/MCP composite sont établis pour la simulation numérique. En simulant le processus de fusion d'un système de stockage d'énergie, les composites MAHP/MCP et MALP/MCP sont comparés numériquement afin d'évaluer la performance de stockage d'énergie thermique. Les résultats montrent que la mousse d'aluminium améliore nettement le processus de transfert de chaleur dans MCP en raison de sa haute conductivité thermique. La porosité des mousses d'aluminium influence non seulement le processus de fusion du composite mais aussi la performance de stockage d'énergie thermique. Grâce à la collaboration avec EPF, une nouvelle méthode d’élaboration des mousses périodiques d'aluminium à pore ouvert est développée dans cette thèse sur la base d’impression 3D. Le comportement thermique des mousses d'aluminium périodiques à pore ouvert/MCP est analysé expérimentalement et numériquement / The objective of this thesis is to study and optimize the manufacturing process of metal foams and the thermal behavior of the aluminum foam/phase change material (PCM) composite by experimental and numerical methods. The manufacturing process of open-cell aluminum foam is developed and optimized to precisely control the parameters of mufacturing. Two pore-scale models of high porosity aluminum foams (HPAF)/PCM composite and low porosity aluminum foams (LPAF)/PCM composite are established for numerical simulation. By simulating the melting process of a layer energy storage system, the HPAF/PCM and LPAFS/PCM composite are compared numerically in order to evaluate the energy storage performance. The results show that aluminum foam improves greatly the heat transfer process in PCM due to its high thermal conductivity. The porosity of aluminum foams could not only influence the melting process of composite but also the energy storage performance. Thanks to the collaboration with EPF, a new manufacturing method of periodic open-cell aluminum foams is developed based on 3D rapid tooling. The thermal behavior of the periodic open-cell aluminum foams/PCM composite is experimentally and numerically analyzed
|
Page generated in 0.1562 seconds