111 |
Integrace materiálů s fázovou změnou ve stavebních konstrukcích / Integration of phase change materials in building structuresKlubal, Tomáš January 2017 (has links)
The thesis deals with the integration of phase change materials (PCMs) into building structures. The basic requirement is improved thermal stability during the summer season without using an air conditioner. This can be achieved by increasing the thermal storage capacity of the building structures. If the thermal capacity cannot be increased on the level of weight, phase change materials can be used. These materials are capable of storing latent heat and thus increasing the thermal storage capacity of the building. In the thesis the phase change materials were investigated in a thermal incubator by thermal analysis and, above all, in full-scale experiments using comparative measurements. The comparative measurements were carried out in two attic rooms at the Faculty of Civil Engineering, Brno University of Technology, where in one was used as a reference and the other for the experiment. Manufactured heat storage panels were installed in the experimental room. These panels are composed of a base plate; the capillary tubes placed on it are coated with modified plaster. The gypsum plaster is modified with micro-capsules paraffin for improving the thermal storage capacity. This system is connected to a thermal air-water pump, by which the storage panels can be additionally cooled or heated. In the experimental measurements, different operating modes were investigated and their effect on the indoor environment was evaluated. Thermal storage in PCMs dampens the temperature amplitude in the building during the summer season and, at the same time, allows the stored heat to be discharged during the night. Moreover, the time interval of withdrawing electric energy from the supply mains is much shorter than in the case of air conditioning. A conventional air conditioner must operate simultaneously with the thermal load, i.e. at the time of peak consumption of electric energy. Thanks to the set regimes, the installed system is capable of responding to external thermal condit
|
112 |
Ammonia Metal Halides Thermochemical Heat Storage System Design / Design av termokemiskt värmelagringssytem med ammoniak-metallhalogeniderLaios, Michail January 2017 (has links)
One of the most crucial issues nowadays is the protection of the environment and the replacement of fossil fuels, which are abundantly used around the world, with more efficient and renewable sources. The highest portion of global energy demands today is used in heating and cooling purposes. One way of alleviating the fossil-based thermal energy uses is to harvest excess thermal energy using thermochemical storage materials (TCMs) for use at heating/cooling demands at different times and locations. Along this, in this master’s thesis, a bench-scale thermochemical heat storage (TCS) system is numerically designed, as a part of a collaborative project: Neutrons for Heat Storage (NHS), funded by Nordforsk. The TCS system that is designed herein employs the reversible chemical reaction of ammonia with a metal halide (MeX) for a heat storage capacity of 0.5 kWh, respectively releasing and storing heat during absorption and desorption of ammonia into and from the MeX. This system is designed for low temperature heat applications, around 40-80 °C. SrCl2 is chosen as the metal halide to be used, based on the research outcomes in determining the most suitable materials conducted by NHS project partners. In the ammonia-SrCl2 system, only the absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered. The main reason is because absorption/desorption between the last ammine and SrCl2 undergoes at a significantly higher/lower reaction pressure (for a given temperature), with a significant volume change compared to the rest of the ammines, and therefore is practically less cost effective. This thesis also includes a detailed discussion of four different thermochemical storage designs from literature, found as the most relevant to the present TCS system study, which use the reaction between ammonia and metal halides. The first system that was examined is a TCS system built by the NHS project partners at Technical University of Denmark (DTU), owing to its similarities with the desired project, regarding the design and parameters the system uses. This system works in batch mode, only allowing either absorption (i.e. heat release) or desorption (i.e. heat storage) at a given cycle. Thus, upgrading the design of this TCS system at DTU is considered as a most-likely solution to the research objectives of this current thesis project. Moreover, the TCS system at DTU uses storage conditions and desorption temperature similar to the current project’s desired low temperature range of 40-80 °C. The second system discussed herein from literature uses two reactors for cold and heat generation, which means that both charging and discharging processes occur simultaneously. This simultaneous operability is the main reason that this particular system was examined in this thesis. The next discussed system from literature also uses two reactors, for absorption and desorption processes, which work reversibly when each process is completed, like in the desired concept of this project. These two systems (i.e., the secondly and the thirdly discussed systems) use the reversible solid-gas reaction for absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3, however, the conditions of pressure and temperature between them differ. The second system from literature operates at desorption and absorption at respective conditions of 96 °C, 15 bar and 87 °C, 11 bar while the third system discussed operates at 103 °C, 16 bar and 59 °C, 3 bar during desorption and absorption respectively. The last system from literature that is discussed herein provides the same desorption temperature of 80 °C. Inaddition this particular study suggests that the reaction of solid with gaseous NH3 is better (than the solid with liquid NH3 reaction) based on results derived from several different low-pressure experiments of the reactions. The main differences between all these discussed systems from literature, as opposed to the desired TCS system design in this thesis project, concern the systems’ operating mode and the pressure and temperature-conditions. The first difference is that only one of the examined systems pumps the solid VIII powder salt around the system in contrast to the others that keep the salt static inside the reactors and pumped only the ammonia around the system, as chosen in the current system. The second difference concerns the operating conditions during absorption and desorption reactions, where these different systems operate at a widely different pressure and temperature conditions as compared to the current system expectations. Thus, there are four main lessons that were learnt via this literature analysis, to improve the TCS system at DTU to the desired new system in this work. The first lesson is related to the reactants’ transportation mechanism that should be used in this system. Regarding this, it was decided to maintain the solid salt (metal halide) stationary inside each reactor (but not pumping it instead of ammonia), similar to the majority of designs discussed from literature. According to the second and third lessons, the solid-gas reaction is the most suitable solution and only the reactions of absorption and desorption between SrCl2∙NH3 and SrCl2∙8NH3 are considered, following the experience from literature (for the reasons explained earlier). The last lesson regards the system’s suitable operating conditions and more specifically the TCS system’s temperatures that should match the district heating temperatures. Thus, the temperature point that was chosen as a priority was 80 °C, from the range 40- 80 °C set in the partner project NHS. To maintain this condition, therefore, the most suitable condition of pressure of both reactions (according to the equilibrium pressure vs temperature curve) was chosen to be at around 8 bar. This same pressure was chosen for both reactions, since the pressure difference between these reactors and the storage of ammonia (i.e. from 8 to 10 bar) should be as small as possible due to the high costs that can arise in the case of a higher pressure difference (i.e. requiring more compressors and heat exchangers). Inspired by these literature cases, firstly a conceptually suitable TCS system was proposed in this project and after that the final desired system was designed and was implemented and evaluated numerically. The numerical design and optimization of the chosen TCS system was performed herein by using the software Aspen Plus (version 9), which contains both fluids and solids in a simulation environment, using consistent physical properties. This TCS system is designed to store and release heat at around 80 °C and 8 bar through absorption and desorption by using two identical reactors respectively. Each reactor includes the amount of around 1 kg (more specifically 0.985 kg) strontium chloride salt reacting with 1.7 kg of ammonia. A verification system is also modelled in Aspen, using available experimental data from literature. Here, the modelled novel system design was adapted to this chosen other system layout from literature which uses the same reaction pair, yet at different operating conditions. This adapted system design in Aspen was then used to verify the chosen configuration and the reliability of the constructed system for the NHS project. Good agreements between the modelled results in Aspen against the available experimental data of this verification model are obtained. A sensitivity analysis is also conducted herein on the proposed novel TCS system to identify the optimum operating conditions and the behaviour of the chosen most important parameters of the system. The designed system provides an energy storage capacity of 0.5 kWh for the specific amounts (in volumetric flow rates) of ammonia and monoammine of strontium chloride, that comes from the analysis, of 1.08696 e-05 kmol/s and 1.5528 e-06 kmol/s respectively. For these specific values of the HTF, the analysis showed that the volumetric flow rates of the heat and cold external sources must be 1.56 l/min (which is decreasing with the increase of the inlet HTF temperature) and 0.42 l/min (which is increasing with the increase of the inlet HTF temperature) respectively. In conclusion, this study presents an ammonia-SrCl2 TCS benchscale system design that allows continuous heat storage and release, in an easy-to-scale up design, also suggesting optimum operating conditions. / En av de mest avgörande frågorna i dag är skyddet av miljön och utfasningen av fossila bränslen som används allmänt över hela världen för mer effektiva och förnybara resurser. Den största delen av den globala energibehovet idag avser uppvärmnings- och kylapplikationer. Ett sätt att minska fossilbaserad termiskenergianvändning är att lagra överskottsvärmeenergi genom termokemiska lagringsmaterial (TCM) och använda den för värme- och kylbehov vid olika tidpunkter och platser. I samband med detta är ett termokemiskt värmelagringssystem numeriskt utformat i detta mastersexamensprojekt, som en del av ett samarbetsprojekt Neutrons for Heat Storage (NHS) finansierat av Nordforsk. Det termokemiska lagringssystemet (TCS) som är konstruerat utnyttjar den reversibla kemiska reaktionen av ammoniak med en metallhalogenid (MeX) för en värmelagringskapacitet på 0.5 kWh, och frigör och lagrar värme respektive under absorption och desorption av ammoniak till och från MeX. Systemet är designat för lågtemperaturuppvärmningstillämpningar runt 40-80 °C. SrCl2 väljs som det mest lämpliga metallhalogeniden för systemet, baserat på studier som utförts av NHS-projektpartnerna. I ammoniak SrCl2-systemet beaktas endast absorption och desorption mellan SrCl2NH3 och SrCl28NH3. De huvudsakliga orsakerna till detta är att absorptionen/desorptionen mellan den sista aminen och SrCl2 kräver ett betydligt högre/lägre reaktionstryck (för en given temperatur), och resulterar i en betydande volymförändring jämfört med resten av aminerna, och är därför praktiskt taget mindre kostnadseffektivt. Detta mastersexamensprojekt inkluderar en detaljerad genomgång av fyra olika TCS-system från litteratur som använder reaktionen mellan ammoniak och metallhalogenider. Dessa väljs här eftersom dessa anses vara de mest relevanta (från litteratur) jämfört med det valda systemet i denna studie. Det första undersökta systemet är ett system byggt av NHS-projektpartnerna vid Danmarks Tekniska Universitet (DTU). Detta har valts på grund av likheterna med det önskade systemet i det aktuella mastersexamensprojektet, vad gäller systemdesign och parametrar. Detta system fungerar i batch-läge, vilket endast tillåter antingen absorption (dvs värmeavgivning) eller desorption (dvs värmelagring) under en specifik cykel. Således kan en uppgraderad design av detta TCS-system vid DTU möjligen vara en lämplig lösning på forskningsmålen för detta mastersexamensprojekt. Dessutom använder detta TCS-system från DTU ganska liknande driftsförhållanden (temperaturer och tryck) i nivå med det aktuella projektets önskade lågtemperaturintervall på 40-80 °C. Det andra systemet från den litteratur som diskuterats använder två reaktorer för kyla och värmeproduktion, vilket innebär att både laddningsoch urladdningsprocesser sker samtidigt. Denna samtidiga operation är främst anledningen till att systemet undersöktes, eftersom detta är en önskad funktion att uppnå i det aktuella projektet. Nästa system från den litteratur som diskuteras häri använder också två reaktorer för absorptions- och desorptionsprocesser, som fungerar reversibelt när varje process är klar, precis som önskat i detta projekt. Dessa två system (dvs det andra och det tredje diskuterade systemen) använder den reversibla fastgasreaktionen för absorption och desorption mellan SrCl2NH3 och SrCl28NH3, dock vid olika tryck- och temperaturförhållanden. Det andra systemet arbetar nämligen under kombinationer av absorption och desorption av 96 °C, 15 bar och 87 °C, 11 bar, medan det tredje systemet arbetar vid 103 °C, 16 bar respektive 59 °C, 3 bar. Det sista systemet som diskuterats från litteraturen arbetar vid samma temperatur som det önskade systemet gör (dvs. 80 ° C) och genom olika lågtrycksexperiment visar att den fasta salt-gasreaktionen är ett bättre val än reaktionen av det fasta saltet med flytande gasreaktion. De viktigaste skillnaderna mellan alla dessa diskuterade system från litteratur i motsats till det önskade TCS-system i detta mastersexamensprojekt, avser systemdriftläge samt deras tryck och X temperaturförhållanden. Den första skillnaden är att endast ett av alla undersökta system pumpar saltet i fast pulverform, till skillnad från de andra som håller saltet stillastående i reaktorerna och endast pumpar ammoniak. Den andra skillnaden gäller driftsförhållandena under absorptions- och desorptionsreaktioner där dessa system arbetar vid mycket olika tryck- och temperaturförhållanden jämfört med det nuvarande systemet. Således, från översynen av alla system, finns det fyra huvudsakliga lärdomar för att förbättra TCS-systemet vid DTU till det önskade nya systemet. Den första är relaterad till reaktanttransportmekanismen som bör användas i detta system. I detta avseende har det beslutats att hålla det fasta saltet (metallhalogenid) stillastående i varje reaktor (men inte pumpa det istället för ammoniak), till skillnad från de flesta system i litteraturen. Enligt dem andra och tredje lektionerna är den fasta gasreaktionen den mest lämpliga lösningen och endast reaktionerna på absorption och desorption mellan SrCl2∙NH3 och SrCl2∙8NH3 bör övervägas enligt erfarenheten från litteraturen (av de skäl som förklarats tidigare). Den sista lärdomen avser systemets lämpliga driftsförhållanden och mer specifikt TCS-systemets temperaturer för att matcha fjärrvärmetemperaturerna. Den temperaturpunkten valts som prioritet, från området 40-80 °C inställt av moderprojektet NHS, sattes till 80 °C. För att bibehålla detta tillstånd var det lämpligaste tryckvillkoret för båda reaktionerna (enligt jämviktstrycket kontra temperaturkurva) valdes att ligga på cirka 8 bar. Samma tryck valdes för båda reaktionerna, eftersom tryckskillnaden mellan dessa reaktorer och lagring av ammoniak (dvs. från 8 till 10 bar) borde vara så liten som möjligt på grund av de höga kostnaderna som kan uppstå vid högre tryckskillnad (dvs. fler kompressorer krävs och värmeväxlare). Inspirerad av denna litteratur föreslogs för det första ett konceptuellt lämpligt TCS-system i detta mastersexamensprojekt, varefter det slutliga systemet implementerades och utvärderades numeriskt för de önskade förhållandena. Den numeriska utformningen och optimeringen av det valda TCS-systemet utfördes här med hjälp av programvaran Aspen Plus (version 9), som innehåller både vätskor och fasta ämnen i en simuleringsmiljö, med konstant fysiska egenskaper. Detta TCS-system är utformat för att lagra och släppa värme vid cirka 80 °C och 8 bar genom absorption och desorption med användning av två identiska reaktorer respektive. Varje reaktor innefattar cirka 1 kg (närmare bestämt 0.985 kg) strontiumkloridsalt reagerande med 1.7 kg ammoniak. Ett verifieringssystem modelleras också i Aspen med hjälp av tillgängliga experimentella data från litteraturen. I detta anpassades den modellerade nya systemdesignen till denna valda andra verifieringssystemlayout från litteratur, som använder samma reaktionspar, men under olika driftsförhållanden. Denna anpassade systemdesign i Aspen användes sedan för att verifiera den valda konfigurationen och tillförlitligheten för det designade systemet för NHS-projektet. Här erhålls ett bra avtal för denna verifieringssystemdesign mellan Aspenmodellresultaten och experimentdata. Här utförs också en känslighetsanalys för det utformade TCSsystemet i det aktuella projektet för att identifiera de optimala driftsförhållandena och beteendet för de valda viktigaste parametrarna i systemet. Det konstruerade systemet ger en energilagringskapacitet på 0.5 kWh för de specifika mängderna (i volymflöde) av ammoniak och monoamin av strontiumklorid, som kommer från analysen, av 1.08696 e-05 kmol/s och 1.5528 e-06 kmol/s respektive. För dessa specifika värden på värmeöverföringsvätskan visade analysen att de volymetriska flödeshastigheterna för värme och kalla yttre källor måste vara 1.56 l/min (vilket minskar när temperaturen på värmeöverföringsvätskan ökar) och 0.42 l/min (som ökar när temperaturen på värmeöverföringsvätskan ökar). Sammanfattningsvis presenterar denna studie ett ammoniak-SrCl2 TCS-bänkskålsystem som möjliggör kontinuerlig värmelagring och frigöring, har en design som är lätt att anpassa och föreslår också optimala driftsförhållanden.
|
113 |
PERFORMANCE ANALYSIS FOR A RESIDENTIAL-SCALE ICE THERMAL ENERGY STORAGE SYSTEMAndrew David Groleau (17499033) 30 November 2023 (has links)
<p dir="ltr">Ice thermal energy storage (ITES) systems have long been an economic way to slash cooling costs in the commercial sector since the 1980s. An ITES system generates cooling in the formation of ice within a storage tank. This occurs during periods of the day when the cost of electricity is low, normally at night. This ice is then melted to absorb the energy within the conditioned space. While ITES systems have been prosperous in the commercial sector, they have yet to take root in the residential sector.</p><p dir="ltr">The U.S. Department of Energy (DoE) has published guidelines for TES. The DoE guidelines include providing a minimum of four hours of cooling, shifting 30-50% of a space’s cooling load to non-peak hours, minimizing the weight, volume, complexity, and cost of the system, creating a system than operates for over 10,000 cycles, enacting predictive control measures, and being modular to increase scale for larger single-family and multi-family homes [1]. The purpose of this research is to develop a model that meets these guidelines.</p><p dir="ltr">After extensive research in both experimental data, technical specifications, existing models, and best practices taken from the works of others a MATLAB model was generated. The modeled ITES system is comprised of a 1m diameter tank by 1m tall. Ice was selected as the PCM. A baseline model was constructed with parameters deemed to be ideal. This model generated an ITES system that can be charged in under four hours and is capable of providing a total of 22.18 kWh of cooling for a single-family home over a four-hour time period. This model was then validated with experimental data and found to have a root mean squared error of 0.0959 for the system state of charge. During the validation both the experimental and model estimation for the water/ice within the tank converged at the HTF supply temperature of -5.2°C.</p><p dir="ltr">With the model established, a parametric analysis was conducted to learn how adjusting a few of the system parameters impact it. The first parameter, reducing the pipe radius, has the potential to lead to a 152.6-minute reduction in charge time. The second parameter, varying the heat transfer fluid (HTF) within the prescribed zone of 0.7 kg/s to 1.2 kg/s, experienced a 4.8-minute increase in charge time for the former and a decrease in charge time by 5.4 minutes for the latter. The third parameter, increasing the pipe spacing and consequently increasing the ratio of mass of water to mass of HTF, yielded a negative impact. A 7.1mm increase in pipe spacing produced a 16.6-minute increase in charge time. Meanwhile, a 14.2mm increase in pipe spacing created a 93.3-minute increase in charge time and exceeded the charging time limit of five hours.</p><p dir="ltr">This functioning model establishes the foundation of creating a residential-scale ITES system. The adjustability and scalability of the code enable it to be modified to user specifications. Thus, allowing for various prototypes to be generated based on it. The model also lays the groundwork to synthesize a code containing an ITES system and a heat pump operating as one. This will aid in the understanding of residential-scale ITES systems and their energy effects.</p>
|
114 |
Cooling Capacity Assessment of Semi-closed GreenhousesLee, Wee Fong 22 June 2010 (has links)
No description available.
|
115 |
Design of Induction heating system for AlSi PCM to use as an alternative charging solution in Azelio´s thermal energy storage system (TES.POD).Gandhi, Ketul January 2022 (has links)
This thesis is a part of the research work for Azelio TES.POD (Thermal energy storage. power on demand). It is a patented thermal energy storage system developed by Swedish cleantech company Azelio AB. The objective of this thesis work to find an alternative charging technology system that can be validated to be efficient and safe in operation for the charging of TES.POD. Induction heating technology is chosen as an alternative charging solution. Derived design steps to implement induction heater as a charging unit then selection of PCM container compatible with induction heater. Later simulating to evaluate total flux path in Finite Element Method Magnetics (FEMM) simulation tool which proposes the electrical results. The electrical performance of the induction heater indicates almost 9% higher electrical losses than the charging mechanism of the existing TES.POD design. However, from a safety standpoint, the alternate charging approach appears to be safer in operation than the existing system. Additionally, it reflects better intuitiveness from a manufacturing viewpoint.
|
116 |
Thermal energy storage in metallic phase change materialsKotze, Johannes Paulus 12 1900 (has links)
Thesis (PhD) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Currently the reduction of the levelised cost of electricity (LCOE) is the main goal of concentrating solar power (CSP) research. Central to a cost reduction strategy proposed by the American Department of Energy is the use of advanced power cycles like supercritical steam Rankine cycles to increase the efficiency of the CSP plant. A supercritical steam cycle requires source temperatures in excess of 620°C, which is above the maximum storage temperature of the current two-tank molten nitrate salt storage, which stores thermal energy at 565°C. Metallic phase change materials (PCM) can store thermal energy at higher temperatures, and do not have the drawbacks of salt based PCMs. A thermal energy storage (TES) concept is developed that uses both metallic PCMs and liquid metal heat transfer fluids (HTF). The concept was proposed in two iterations, one where steam is generated directly from the PCM – direct steam generation (DSG), and another where a separate liquid metal/water heat exchanger is used – indirect steam generation, (ISG). Eutectic aluminium-silicon alloy (AlSi12) was selected as the ideal metallic PCM for research, and eutectic sodium-potassium alloy (NaK) as the most suitable heat transfer fluid.
Thermal energy storage in PCMs results in moving boundary heat transfer problems, which has design implications. The heat transfer analysis of the heat transfer surfaces is significantly simplified if quasi-steady state heat transfer analysis can be assumed, and this is true if the Stefan condition is met. To validate the simplifying assumptions and to prove the concept, a prototype heat storage unit was built. During testing, it was shown that the simplifying assumptions are valid, and that the prototype worked, validating the concept. Unfortunately unexpected corrosion issues limited the experimental work, but highlighted an important aspect of metallic PCM TES. Liquid aluminium based alloys are highly corrosive to most materials and this is a topic for future investigation.
To demonstrate the practicality of the concept and to come to terms with the control strategy of both proposed concepts, a storage unit was designed for a 100 MW power plant with 15 hours of thermal storage. Only AlSi12 was used in the design, limiting the power cycle to a subcritical power block. This demonstrated some practicalities about the concept and shed some light on control issues regarding the DSG concept. A techno-economic evaluation of metallic PCM storage concluded that metallic PCMs can be used in conjunction with liquid metal heat transfer fluids to achieve high temperature storage and it should be economically viable if the corrosion issues of aluminium alloys can be resolved. The use of advanced power cycles, metallic PCM storage and liquid metal heat transfer is only merited if significant reduction in LCOE in the whole plant is achieved and only forms part of the solution. Cascading of multiple PCMs across a range of temperatures is required to minimize entropy generation. Two-tank molten salt storage can also be used in conjunction with cascaded metallic PCM storage to minimize cost, but this also needs further investigation. / AFRIKAANSE OPSOMMING: Tans is die minimering van die gemiddelde leeftydkoste van elektrisiteit (GLVE) die hoofdoel van gekonsentreerde son-energie navorsing. In die kosteverminderingsplan wat voorgestel is deur die Amerikaanse Departement van Energie, word die gebruik van gevorderde kragsiklusse aanbeveel. 'n Superkritiese stoom-siklus vereis bron temperature hoër as 620 °C, wat bo die 565 °C maksimum stoor temperatuur van die huidige twee-tenk gesmelte nitraatsout termiese energiestoor (TES) is. Metaal fase veranderingsmateriale (FVMe) kan termiese energie stoor by hoër temperature, en het nie die nadele van soutgebaseerde FVMe nie. ʼn TES konsep word ontwikkel wat gebruik maak van metaal FVM en vloeibare metaal warmteoordrag vloeistof. Die konsep is voorgestel in twee iterasies; een waar stoom direk gegenereer word uit die FVM (direkte stoomopwekking (DSO)), en 'n ander waar 'n afsonderlike vloeibare metaal/water warmteruiler gebruik word (indirekte stoomopwekking (ISO)). Eutektiese aluminium-silikon allooi (AlSi12) is gekies as die mees geskikte metaal FVM vir navorsingsdoeleindes, en eutektiese natrium – kalium allooi (NaK) as die mees geskikte warmteoordrag vloeistof.
Termiese energie stoor in FVMe lei tot bewegende grens warmteoordrag berekeninge, wat ontwerps-implikasies het. Die warmteoordrag ontleding van die warmteruilers word aansienlik vereenvoudig indien kwasi-bestendige toestand warmteoordrag ontledings gebruik kan word en dit is geldig indien daar aan die Stefan toestand voldoen word. Om vereenvoudigende aannames te bevestig en om die konsep te bewys is 'n prototipe warmte stoor eenheid gebou. Gedurende toetse is daar bewys dat die vereenvoudigende aannames geldig is, dat die prototipe werk en dien as ʼn bevestiging van die konsep. Ongelukkig het onverwagte korrosie die eksperimentele werk kortgeknip, maar dit het klem op 'n belangrike aspek van metaal FVM TES geplaas. Vloeibare aluminium allooie is hoogs korrosief en dit is 'n onderwerp vir toekomstige navorsing.
Om die praktiese uitvoerbaarheid van die konsep te demonstreer en om die beheerstrategie van beide voorgestelde konsepte te bevestig is 'n stoor-eenheid ontwerp vir 'n 100 MW kragstasie met 15 uur van 'n TES. Slegs AlSi12 is gebruik in die ontwerp, wat die kragsiklus beperk het tot 'n subkritiese stoomsiklus. Dit het praktiese aspekte van die konsep onderteken, en beheerkwessies rakende die DSO konsep in die kollig geplaas. In 'n tegno-ekonomiese analise van metaal FVM TES word die gevolgtrekking gemaak dat metaal FVMe gebruik kan word in samewerking met 'n vloeibare metaal warmteoordrag vloeistof om hoë temperatuur stoor moontlik te maak en dat dit ekonomies lewensvatbaar is indien die korrosie kwessies van aluminium allooi opgelos kan word. Die gebruik van gevorderde kragsiklusse, metaal FVM stoor en vloeibare metaal warmteoordrag word net geregverdig indien beduidende vermindering in GLVE van die hele kragsentrale bereik is, en dit vorm slegs 'n deel van die oplossing. ʼn Kaskade van verskeie FVMe oor 'n reeks van temperature word vereis om entropie generasie te minimeer. Twee-tenk gesmelte soutstoor kan ook gebruik word in samewerking met kaskade metaal FVM stoor om koste te verminder, maar dit moet ook verder ondersoek word.
|
117 |
Contribution au développement et à l’analyse d’une enveloppe de bâtiment multifonctionnelle dans le cadre de l’optimisation du confort dans l’habitat / Development and evaluation of an innovative multifunctional building envelope : thermal energy storage with Phase Change Materials (PCMs)Bahrar, Myriam 17 January 2018 (has links)
Le secteur du bâtiment recèle un fort potentiel d’amélioration de l'efficacité énergétique et de réduction de l’empreinte écologique. Dans cette optique, l’enveloppe du bâtiment joue un rôle important pour relever le défi de la transition énergétique. En effet, une bonne conception de l’enveloppe contribue efficacement à réduire la consommation d’énergie tout en réduisant les émissions de CO2 associés. Cela s’accompagne notamment d’une démarche de développement de nouveaux matériaux et principes constructifs. Ce projet de thèse s’inscrit dans ce cadre en proposant un nouveau matériau composite, qui porte sur l’association de deux matériaux innovant : composite textile mortier (TRC) et matériaux à changement de phase (MCPs). L’objectif de cette combinaison est de contribuer au développement d’éléments de façades multifonctionnelles permettant d’allier performances énergétiques, mécaniques et environnementales. Le but de notre étude est de caractériser en premier lieu, les propriétés mécaniques et thermiques de ces composites puis, d’évaluer l’impact des MCPs sur le confort thermique intérieur pour différentes configurations. Pour atteindre ces objectifs, nous avons adopté une démarche expérimentale et numérique multi échelle. Une campagne expérimentale à l’échelle du laboratoire et in-situ a été menée. En parallèle, nous avons développé un modèle numérique de paroi multicouche, couplé à un modèle de bâtiment. Enfin, nous avons exploité ce couplage pour réaliser une optimisation multicritère à base d’algorithmes génétiques. / The building sector has a great potential to improve energy efficiency and reduce the greenhouse gas emissions. Improvements to the building envelope and Innovations in building materials have the potential to achieve sustainability within the built environment. This PhD thesis focuses on the development of multifunctional façade elements in order to optimize the building energy consumption while maintaining an optimal indoor human thermal comfort. The proposed solution consist of using passive storage by means of phase change materials associated with alternative construction materials such as textile reinforced concrete (TRC). The aim of the study is to characterize mechanical and thermal properties of TRC composites and to evaluate the effect of PCMs on indoor thermal comfort. To meet these objectives, experimental devices have been set up for the characterization (at the component scale and in situ) of the mechanical and thermal behaviour of different TRC panels. In parallel, we have developed a numerical model for the prediction of wall temperature profiles. Finally, a multi-objective optimization of the façade elements is carried out using genetic algorithms to determine the better combinations able to combine the energy performance with the mechanical performance.
|
118 |
Procédé de stockage d'énergie solaire thermique par adsorption pour le chauffage des bâtiments : modélisation et simulation numérique / Numerical and experimental study of a solar assisted zeolite heat storage system for low-energy buildingsTatsidjodoung, Parfait 26 May 2014 (has links)
Les systèmes de stockage de chaleur par sorption (SSCS) ouvrent de nouvelles perspectives dans l'exploitation de l'énergie solaire pour le chauffage des bâtiments résidentiels. En effet, ces systèmes sont très prometteurs dans la mesure où ils permettent un stockage de chaleur sur de longues périodes (le stockage est réalisé sous forme de potentiel chimique) et offrent des densités énergétiques importantes (jusqu'à 230 kWh/m3 de matériau en moyenne) en comparaison aux systèmes classiques comme le stockage par chaleur sensible (qui, pour le cas de l'eau, dispose d'une densité énergétique moyenne d'environ 81 kWh/m3 de matériau pour une variation de 70°C) et le stockage par chaleur latente (qui atteint des densités énergétiques de 90 kWh/m3 de matériau).La présente thèse vise à étudier les performances d'un système de stockage de chaleur par sorption à base de zéolithe 13X intégré à un bâtiment type basse consommation. Des modèles mathématiques de transferts couplés de masse et de chaleur des différents composants du système sont développés et validés par le biais de l'expérimentation. La simulation numérique dynamique, comme outil de dimensionnement, permet, à partir des résultats d'analyses de sensibilité paramétrique sur les différents composants du système, l'étude de son fonctionnement et les critères de sa faisabilité. / Sorption heat storage systems (SHSS) open new perspectives for solar heating of residential buildings. These systems allow long term heat storage (storage is done in the form of chemical potential) and offer high energy densities (up to 230 kWh/m3 of material on average) compared to conventional heat storage systems such as sensible heat storage (which, for the case of water, has an average energy density of approximately 81 kWh/m3 of material for a temperature change of 70 °C) and latent heat storage (nearly reaching energy densities of 90 kWh/m3 of material on average).This thesis aims to study the performance of a sorption solar heat storage system on zeolite 13X, integrated to low-energy building. Mathematical models of coupled heat and mass transfer of various components of the system are developed and validated through experimentation. Numerical dynamic simulations allow to study the functioning of the SHSS in specific conditions, and its design with the results from the parametric sensitivity analysis on its components.
|
119 |
Etude expérimentale d’un amortisseur thermique composite MCP-NTC / Experimental study of a composite PCM-CNT thermal damperKinkelin, Christophe 18 October 2016 (has links)
L’amortisseur thermique étudié dans le cadre de cette thèse a pour objectif de limiter les pics de température des composants électroniques fonctionnant en régime transitoire au moyen d’une structure composite consistant en un réseau de nanotubes de carbone (NTC) rempli de matériau à changement de phase (MCP) solide-liquide, le tout étant contenu dans un boîtier en silicium (Si). Ce système passif vise à augmenter l’inertie thermique volumique du composant grâce à la chaleur latente du MCP tout en maintenant une bonne conductance thermique grâce aux NTC. Un dispositif expérimental polyvalent a été développé spécifiquement pour caractériser les différentes générations d’échantillons fabriqués par les partenaires du projet THERMA3D. L’excitation thermique de l’échantillon est réalisée au moyen d’un laser en face amont et la réponse thermique est mesurée par caméra infrarouge simultanément sur les faces amont et aval. L’application d’une peinture sélectionnée sur l’échantillon permet d’accéder à sa température après un étalonnage dédié. Des méthodes d’estimation de paramètres ont été développées pour quantifier les deux caractéristiques essentielles de l’amortisseur thermique que sont sa capacité de stockage thermique et sa résistance thermique. Les sensibilités de la résistance thermique aux caractéristiques de la connexion Si/NTC et à la longueur des NTC ont été étudiées et les résistances thermiques d’interface Si/NTC ont été identifiées comme dominantes au sein du système. Des essais de cyclage thermique ont permis d’évaluer la fiabilité de l’ensemble de manière accélérée. Le comportement du MCP et la qualité du matériau de scellement ont été analysés par voie optique. Par ailleurs, la plus élevée des deux résistances thermiques d’interface Si/NTC a été localisée grâce à la visualisation infrarouge du réseau de NTC à travers le silicium semi-transparent. Enfin, une méthode de contrôle non destructif de la qualité de l’interface Si/NTC a été développée pour les amortisseurs thermiques de dernière génération. / The purpose of the studied thermal damper is to smooth the temperature peaks of transient electronic components via a composite structure consisting of an array of carbon nanotubes (CNT) filled with solid-liquid phase change material (PCM), the whole being embedded in a silicon (Si) casing. This passive system is intended to increase the thermal inertia per unit of volume of the electronic component thanks to the latent heat of the PCM while maintaining a high thermal conductance thanks to the CNT. A versatile test bench was specifically developed in order to characterize the different generations of samples fabricated by the partners of the THERMA3D project. The thermal excitation of the front side of the sample is generated by a laser and the thermal response is measured simultaneously on the front and back sides by an infrared camera. A selected paint can be deposited on the sample in order to access its temperature by means of a dedicated calibration. Parameter estimation methods were developed in order to quantify both main characteristics of the thermal damper: its heat storage capacity and its thermal resistance. The sensitivities of the thermal resistance to the features of the Si/CNT connection and to the length of the CNT were studied and it was found out that the interfacial thermal resistances Si/CNT are dominant in the system. Thermal cycling tests enabled to assess the reliability of the thermal damper in an accelerated manner. The behavior of the PCM and the quality of the sealing material were optically analyzed. Besides, the infrared visualization of the CNT array through the semi-transparent silicon enabled to identify the highest of both Si/CNT interfacial thermal resistances. Finally, a non-destructive testing method for the evaluation of the quality of Si/CNT interfaces was developed for the latest generation of thermal dampers.
|
120 |
Développement d’un mur capteur-stockeur solaire pour le chauffage des bâtiments à très basse consommation d’énergie / Experimental tests and modeling of a solar storage wall for low energy consumption buildingBasecq, Vincent 28 September 2015 (has links)
L’exploitation des énergies renouvelables est une voie nécessaire afin de lutter contre le réchauffement climatique, et afin d’anticiper la raréfaction des matières premières. Le mur capteur/stockeur solaire appliqué aux bâtiments à très basses consommations d’énergie s’inscrit dans cette volonté d’une transition vers les énergies renouvelables. Dans le cadre de ces travaux de thèse, l’énergie solaire est stockée dans des matériaux à changement de phase qui permettent un stockage de chaleur latente plus dense que le stockage sensible des matériaux de construction traditionnels. Cette énergie est restituée à l’ambiance intérieure par la circulation d’air neuf à travers l’élément de stockage. Un mur capteur/stockeur solaire a été développé en s’appuyant sur une revue bibliographique préalable des différents travaux scientifiques menés pour des problématiques similaires. Le dispositif a été expérimenté en environnement réel dans un premier temps, intégré à l’enveloppe d’un petit bâtiment en bois fortement isolé. La quantité de chaleur captée par le mur peut atteindre 2 kWh.m-2.jour-1, pour une quantité de chaleur restituée à l’air de 1,5 kWh.jour-1. Le dispositif a été testé en conditions maîtrisées de laboratoire. Une attention particulière a été portée à la mesure de température au sein même du MCP, afin d’analyser le comportement thermique de ce dernier. Deux phénomènes ont été observés : le recouvrement de la phase liquide sur la phase solide et l’homogénéisation des températures en phase liquide. Le comportement thermique du MCP dépend des interactions entre trois flux : le flux de charge (apport solaire), le flux de décharge (énergie restituée à l’air) et un flux vertical induit par le recouvrement de la phase liquide sur la phase solide. Par ailleurs, un modèle numérique dynamique du mur capteur a été développé en volumes finis. Ce modèle permet de simuler l’effet de serre du mur capteur, le stockage de chaleur et les phases de solidification et de fusion du MCP, et la restitution de chaleur à l’air entrant dans le bâtiment. Les résultats numériques alors obtenus ont été confrontés aux données expérimentales. Le modèle a été validé pour la température d’air soufflée (en sortie du mur capteur). L’écart entre valeurs expérimentales, sur des périodes journalières, est en moyenne de 0,6°C pour la température d’air soufflé et est inférieur à 10 % pour l’énergie fournie à l’air préchauffé. Ces différences sont inférieures aux incertitudes de mesures et à l’incertitude du calcul énergétique. Le modèle ainsi validé peut être couplé au code de simulation thermique dynamique du bâtiment TRNSYS. / Use of renewable energy is a necessary way to fight global warming and to anticipate scarcity of raw materials. The solar/storage wall used in buildings with lower energy consumption meets this evolution to renewable energy sources. In this thesis, solar energy is stored in a phase charge material (PCM), which provides latent storage. The latent storage is higher than sensible storage in usual building materials. This energy is restored to indoor air, by circulation and heating of inlet air through the wall storage element. In this thesis work, the solar storage wall was developed, based on previous published works dealing with similar systems. An experiment has been carried out with the solar storage integrated in a small wood building with a high insulation. The solar energy recovered by the wall reaches 2 kWh.m-2.day-1 and 1,5 kWh.day-1 was restored to air. In a second experiment, a prototype was developed to be used in controlled laboratory conditions. Special attention was given to PCM temperature measures to analyze the PCM thermal behavior. Two phenomena were observed: (i) liquid phase recovering solid phase, (ii) temperature homogenization in liquid phase. The PCM thermal behavior depends on interactions between three energetic flows: the charge flow (solar energy recovered), the restored flow (energy restored to the inlet air) and a vertical flow created by the liquid phase recovering. Furthermore, a numerical dynamic model for the solar storage wall was developed. It is based on a finite volume approach. This model simulates: (i) the ground effect in a solar wall, (ii) the thermal energy storage and phase changes, and (iii) heat recovery energy to air inlet. Numerical results were compared to experimental values. The model was validated for air temperature for daily cycle defined with a charge period (during sunning) and a continue air heating. The difference between numerical values and experimental values are lower than 0.6°C in mean temperature, and 10% in energy. This difference is lower than measurement uncertainties and energy calculation error margins. So the model is valeted and can be coupled with the dynamic thermal simulation code: TRNSYS.
|
Page generated in 0.0774 seconds