• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 93
  • 24
  • 19
  • 15
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

An Examination of Tern Diet in a Changing Gulf of Maine

Yakola, Keenan 29 October 2019 (has links)
The Gulf of Maine is a dynamic ecosystem with rapidly warming sea surface temperatures (SSTs), therefore it is vital to understand how species interactions vary over time and space. In chapter two, I quantify and compare dietary differences among four tern species, across seven islands in the region, over a 32-year period. Multivariate statistical analyses were employed to discern spatial and temporal differences in foraging ecology. Findings suggest there are significant differences between species and islands; however, only three prey species comprise the majority of chick diet for all terns and islands. The reliance on only a few prey items led to narrow foraging niches, potentially increasing their vulnerability to climate change, fisheries practices, or other localized disturbances. The third chapter characterizes long-term trends across nesting islands, describes within-season dietary phenology, and quantifies how warming SSTs may influence diet. Over time there was a declining trend in the occurrence of hake and increasing amounts of sand lance. In addition, hake and sand lance occur with higher frequency earlier in the season, while butterfish and “other fish” showed the opposite trend. Furthermore, results indicated that the within-season decline of hake occurs more rapidly in years with earlier spring thermal transition dates potentially indicating a phenological shift. Finally, warming SSTs were found to be negatively correlated with hake and positively correlated with the “other fish” prey group. Given projections of further warming in the region, understanding how the diet of these seabirds may be impacted in crucial to their conservation.
62

Yaaw (Herring) & Gaax’w (Herring Eggs): The Knowledge Politics of a Traditional Tlingit Subsistence Foodway in Sitka, Alaska

Todd, Paul A. January 2017 (has links)
No description available.
63

Juvenile River Herring in Freshwater Lakes: Sampling Approaches for Evaluating Growth and Survival

Devine, Matthew T 27 October 2017 (has links) (PDF)
River herring, collectively alewives (Alosa pseudoharengus) and blueback herring (A. aestivalis), have experienced substantial population declines over the past five decades due in large part to overfishing, combined with other sources of mortality, and disrupted access to critical freshwater spawning habitats. Anadromous river herring populations are currently assessed by counting adults in rivers during upstream spawning migrations, but no field-based assessment methods exist for estimating juvenile densities in freshwater nursery habitats. Counts of 4-year-old migrating adults are variable and prevent understanding about how mortality acts on different life stages prior to returning to spawn (e.g., juveniles and immature adults in lakes, rivers, estuaries, and oceans). This in turn makes it challenging to infer a link between adult counts and juvenile recruitment and to develop effective management policy. I used a pelagic purse seine to investigate juvenile river herring densities, growth, and mortality across 16 New England lakes. First, I evaluated the effectiveness and sampling precision of a pelagic purse seine for capturing juvenile river herring in lakes, since this sampling gear has not been systematically tested. Sampling at night in June or July resulted in highest catches. Precision, as measured by the coefficient of variation, was lowest in July (0.23) compared to June (0.32), August (0.38), and September (0.61). Simulation results indicated that the effort required to produce precise density estimates is largely dependent on lake size with small lakes (<50 >ha) requiring up to 10 purse seine hauls and large lakes (>50 ha) requiring 15–20 hauls. These results suggested that juvenile recruitment densities can be effectively measured using a purse seine at night in June or July with 10–20 hauls. Using juvenile fishes captured during purse seining in June–September 2015, I calculated growth and mortality rates from sagittal otoliths. Density, growth, and mortality were highly variable among lakes, and mixed-effects regression models explained 11%–76% of the variance in these estimates. Juvenile densities ranged over an order of magnitude and were inversely related to dissolved organic carbon. Juvenile growth rates were higher in productive systems (i.e., low secchi depth, high nutrients) and were strongly density-dependent, leading to much larger fish at age in productive lakes with low densities of river herring compared to high density lakes. Water temperature explained 56%–85% of the variation in juvenile growth rates during the first 30 days of life. Mortality was positively related to total phosphorous levels and inversely related to hatch date, with earlier hatching cohorts experiencing higher mortality. These results indicate the importance of water quality and juvenile densities in nursery habitats for determining juvenile growth and survival. This study encourages future assessments of juvenile river herring in freshwater and contributes to an understanding of factors explaining juvenile recruitment that can guide more effective and comprehensive management of river herring.
64

Population dynamics and distribution of northern Norwegian killer whales in relation to wintering herring

Kuningas, Sanna January 2014 (has links)
The northern Norwegian killer whale (Orcinus orca) is an important predator but little is known about its population dynamics, particular in response to changes in its main prey, the highly dynamic Norwegian spring spawning (NSS) herring (Clupea harengus). The main aims of this thesis were to estimate killer whale population parameters, to explore the future viability of the population, and to explore the response of this predator to changes in distribution and abundance of its main prey over the last 25 years. Population size was estimated as ~ 700 individuals, taking heterogeneity of capture probabilities into account and correcting for unmarked animals. Apparent survival rates of 0.974 (SE = 0.006) for adult males and 0.984 (SE = 0.006) for adult females were estimated accounting for temporary emigration, transience and trap-dependency. Temporary emigration was greater for males than females. Calving intervals ranged from 3 to 14 years (mean = 5.06); equivalent to 0.197 calves per mature female per year. Future viability of the killer whale population was evaluated under various plausible scenarios. The baseline scenario using the best available information predicted a viable population and indicated that the population may be increasing size. Analysis of data on naval sonar activity, killer whale sightings and herring abundance showed that naval sonar activity appeared to have a negative effect on killer whale presence during a period of low prey availability. A time lag of four years was found between the first sign of NSS herring changing its distribution and reduced killer whale presence inside the fjord system. Analysis of energy budgets showed that killer whales spent more time travelling/foraging in 2005/06 than the 1990s. The fjord system was inferred to be a preferred habitat for killer whales when there was a higher density of NSS herring in this area compared to offshore area.
65

Changes in condition of herring (<em>Clupea harengus</em>) in Swedish coastal waters

Persson, Martin January 2010 (has links)
<p>The condition of the herring (<em>Clupea harengus</em>) in the Baltic Sea has decreased during the past 30-40 years. This decrease could be explained by different factors; (1) change in diet due to changes in zooplankton community, (2) changes in water temperature and salinity, (3) increasing nutrient inputs and (4) competition for food with other species such as sprat (<em>Sprattus sprattus</em>). In this study the change in condition was analysed using the Fulton’s condition index, and by looking at age and sex of the fish as well as the season and locationthe fish was caught, the differences between these factors were presented. Data from the national Swedish contaminant monitoring programme where used from four locations in the Baltic Sea and two locations at the Swedish West coast. The data was analysed using multiple regressions in R Commander. The result show that the condition, and the temporal trends in condition value, varies at different locations, with higher condition values and increasing temporal trends at the Swedish West coast, compared to the Baltic Sea with lower condition values and where three of four locations show decreasing temporal trends. The condition varied between spring and autumn caught herring as well, while age and sex showed less significant differences.</p>
66

Changes in condition of herring (Clupea harengus) in Swedish coastal waters

Persson, Martin January 2010 (has links)
The condition of the herring (Clupea harengus) in the Baltic Sea has decreased during the past 30-40 years. This decrease could be explained by different factors; (1) change in diet due to changes in zooplankton community, (2) changes in water temperature and salinity, (3) increasing nutrient inputs and (4) competition for food with other species such as sprat (Sprattus sprattus). In this study the change in condition was analysed using the Fulton’s condition index, and by looking at age and sex of the fish as well as the season and locationthe fish was caught, the differences between these factors were presented. Data from the national Swedish contaminant monitoring programme where used from four locations in the Baltic Sea and two locations at the Swedish West coast. The data was analysed using multiple regressions in R Commander. The result show that the condition, and the temporal trends in condition value, varies at different locations, with higher condition values and increasing temporal trends at the Swedish West coast, compared to the Baltic Sea with lower condition values and where three of four locations show decreasing temporal trends. The condition varied between spring and autumn caught herring as well, while age and sex showed less significant differences.
67

Simultaneous MSY management of a predator and prey species, the Cod (Gadus morhua) and Herring (Clupea harengus) in the Baltic Sea

Hellner, Qarin January 2012 (has links)
The European Commission manages fish stocks by applying a fishing mortality based on the maximum sustainable yield concept. So far most Baltic Sea fishing maximum sustainable yieldmodels have focused on one species at a time. The few existing multi-species models have assumed that a species’ maturity and growth is dependent on the availability of food. Our two-species models make it possible to investigate if there is a conflict between fishing maximum sustainable yield for cod and herring in the Baltic Sea. This two-species model of cod, as a predator and herring as prey, takes into account environmental drivers on cod and herring recruitment. Reproductive volume together with year-growth, (a year specific effect on growth of external variables like food availability) and predation by grey seals was included in the cod model. The herring model was dependent on cod spawning stock biomass and year-growth. The result shows that the reproductive volume is the main factor that affects the maximum sustainable yield for cod. The spawning stock biomass at maximum sustainable yield is more sensitive to reproductive volume than year-growth. When predation from seals is added in mortality and high environmental factors occurs the spawning stock biomass would be 50% compared to the spawning stock biomass at high environmental effects without seal predation. Four simulations of high cod spawning stock biomass were devastating for the herring population that was eradicated with high predation pressure. The herring maximum sustainable yield depends on the amount of cod spawning stack biomass i.e. the effect of high or low reproductive volume. Two analyses were made on a current environmental state for both species. The first analysis had a natural mortality of 0.2 for cod, which gave an fishing mortality of 0.20 and maximum sustainable yield of 410 000 tons. The herring had a fishing mortality of 0.03 and maximum sustainable yield of 11 000 tons. The second simulation included seal predation in cod mortality which decreased the cod maximum sustainable yield by 98% at a fishing mortality of 0.02, which gave a fishing mortality of 0.19 and maximum sustainable yield of 275 000 tons for herring. This gives a 25 times increase of herring maximum sustainable yield compared to the result without predation on cod. The cod population dynamics is vulnerable to environmental changes and to secure a healthy and productive cod population the target fishing mortality should be kept in phase with current reproductive volume. / Europeiska kommissionen förvaltar fiskbestånden genom att tillämpa fiskekvoter baserat på konceptet maximalt hållbart uttag. Hittills har de flesta maximalt hållbara fiske-fångst modeller för Östersjön fokuserat på en art i taget. De få befintliga fler-arts-modeller har antagit att en arts mognad och tillväxt är beroende av tillgången på föda. Vår två-arts-modell gör det möjligt att undersöka om det finns en konflikt mellan maximal hållbar fiske-fångst på torsk och sill i Östersjön. Denna två-arts-modell med torsk som ett rovdjur och sill som byte, tar hänsyn till miljön som drivkraft på deras rekrytering. I torskmodellen ingick reproduktiv volym tillsammans med årlig tillväxt (ett års specifika effekt på tillväxten beroende av externa variabler som tillgången till föda) och predation av gråsäl. Sill-modellen var beroende av årlig tillväxt och lekbeståndets biomassa hos torsk. Resultaten visar att den viktigaste faktorn som påverkar maximalt hållbart uttag för torsk är reproduktiv volym. Lekbeståndets biomassa vid maximalt hållbart uttag är mer känsligt för förändringar i reproduktiv volym än årlig tillväxt. När predation från säl tillsätts och höga gynnsamma miljöfaktorer råder är lekbeståndets biomassa 50 % jämfört med lekbeståndets biomassa vid höga gynnsamma miljöeffekter utan säl predation. Fyra simuleringar gav hög lekbestånds biomassa för torsk vilket var förödande för sillpopulationen som utrotades pga. högt predationstryck. Sillens maximala hållbara uttag beror på mängden lekbestånds biomassa hos torsk, d.v.s. effekten av hög eller låg reproduktiv volym. Två analyser gjordes på nuvarande miljömässiga nivåer för båda arterna. Den första analysen hade en naturlig dödlighet på 0,2 för torsk, vilket gav en fiske-mortalitet på 0,20 och maximalt hållbart uttag på 410 000 ton. Sillen hade en fiske-mortalitet på 0,03 och maximalt hållbart uttag på 11 000 ton. I den andra simuleringen ingår sälpredation på torsk vilket minskade torskens maximala hållbara uttag med 98 % vid en fiske-mortalitet på 0,02, vilket gav en fiske-mortalitet på 0,19 och maximalt hållbart uttag på 275 000 ton för sill. Detta ger en ökning av maximalt hållbart uttag för sill 25 gånger jämfört med resultatet utan predation på torsk. Torskens populationsdynamik är sårbar för miljöförändringar och för att säkra ett sunt och produktivt torskbestånd bör fiskemortaliteten hållas i fas med nuvarande reproduktiva volym.
68

QSBMR quantitative structure biomagnification relationships : studies regarding persistent environmental pollutants in the Baltic Sea biota /

Lundstedt-Enkel, Katrin, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Uppsala universitet, 2005. / Härtill 4 uppsatser.
69

Evaluation and management of the Finnish herring fishery

Rahikainen, Mika January 2005 (has links) (PDF)
Thesis (Doctoral)--Helsingin yliopisto, 2005. / Tiivistelmäosa ja 5 julkaisua Includes bibliographical references. Saatavana myös elektronisena (ISBN 952-10-2740-1 pdf), Available in PDF format via the World Wide Web. http://ethesis.helsinki.fi
70

Automatic classification of fish and bubbles at pixel-level precision in multi-frequency acoustic echograms using U-Net convolutional neural networks

Slonimer, Alex 05 April 2022 (has links)
Multi-frequency backscatter acoustic profilers (echosounders) are used to measure biological and physical phenomena in the ocean in ways that are not possible with optical methods. Echosounders are commonly used on ocean observatories and by commercial fisheries but require significant manual effort to classify species of interest within the collected echograms. The work presented in this thesis tackles the challenging task of automating the identification of fish and other phenomena in echosounder data, with specific application to aggregations of juvenile salmon, schools of herring, and bubbles of air that have been mixed into the water. U-Net convolutional neural networks (CNNs) are used to accomplish this task by identifying classes at the pixel level. The data considered here were collected in Okisollo Channel on the coast of British Columbia, Canada, using an Acoustic Zooplankton and Fish Profiler at four frequencies (67.5, 125, 200, and 455 kHz). The entrainment of air bubbles and the behaviour of fish are both governed by the surrounding physical environment. To improve the classification, simulated channels for water depth and solar elevation angle (a proxy for sunlight) are used to encode the CNNs with information related to the environment providing spatial and temporal context. The manual annotation of echograms at the pixel level is a challenging process, and a custom application was developed to aid in this process. A relatively small set of annotations were created and are used to train the CNNs. During training, the echogram data are divided into randomly-spaced square tiles to encode the models with robust features, and into overlapping tiles for added redundancy during classification. This is done without removing noise in the data, thus ensuring broad applicability. This approach is proven highly successful, as evidenced by the best-performing U-Net model producing F1 scores of 93.0%, 87.3% and 86.5% for herring, salmon, and bubble classes, respectively. These models also achieve promising results when applied to echogram data with coarser resolution. One goal in fisheries acoustics is to detect distinct schools of fish. Following the initial pixel level classification, the results from the best performing U-Net model are fed through a heuristic module, inspired by traditional fisheries methods, that links connected components of identified fish (school candidates) into distinct school objects. The results are compared to the outputs from a recent study that relied on a Mask R-CNN architecture to apply instance segmentation for classifying fish schools. It is demonstrated that the U-Net/heuristic hybrid technique improves on the Mask R-CNN approach by a small amount for the classification of herring schools, and by a large amount for aggregations of juvenile salmon (improvement in mean average precision from 24.7% to 56.1%). / Graduate

Page generated in 0.0713 seconds