• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase / hnRNP KのRNA結合モチーフはAIDによる抗体多様性に必須である

Yin, Ziwei 27 July 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医科学) / 甲第22698号 / 医科博第113号 / 新制||医科||8(附属図書館) / 京都大学大学院医学研究科医科学専攻 / (主査)教授 竹内 理, 教授 椛島 健治, 教授 河本 宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
2

Studies On Polypyrimidine Tract Binding Protein : Identification Of Interacting Partners

Ramesh, V 01 1900 (has links)
PTB (HnRNP I) is a multifunctional RNA binding protein which participates in a variety of RNA metabolic processes put together called as post transcriptional gene regulation. It interacts with shuttling hnRNPs L, K and E2 of the spliceosomal machinery and also with other RNA binding proteins like PSF, Raver1 and Raver2, which assists PTB in splicing. Based on the complexity of these processes and multifunctional nature of PTB, we hypothesized that; it might interact with various additional proteins not identified till date. Keeping this objective in mind, we set out to screen the custom made 18 day old mouse testes cDNA library in pGAD10 vector available in the laboratory, to hunt for novel interacting partners of PTB using the Clontech’s Matchmaker Gal4 yeast two hybrid system III. PTB1, the prototype of PTB was chosen and the above mentioned cDNA library was screened for novel PTB interacting partners. Twenty five large scale library transformations (spanning 8*106 independent clones) were performed and 99 putatives were obtained. By re-transformation of these library plasmids with bait construct to check for the interaction phenotype and eliminating bait independent activation of reporter genes and elimination of known false positives, only 5 clones were consistent with the interaction phenotype. All these library plasmids were sequenced with vector specific primers, ORF was identified and BLAST analysis for the identification of insert was done. Two of these clones encoded the partial CDS of mouse Protein Inhibitor of Activated STAT3-PIAS3. One of these encoded the partial CDS of mouse TOLL Interacting Protein-TOLLIP. The other two encoded the partial CDS of mouse importin-α and mouse hnRNP K, both of which were already known interacting partners of PTB. GST pull down assay and mammalian matchmaker co-immunoprecipitation was used for confirming the in vitro one to one physical interaction between PTB and these newly identified protein partners. Indirect Immunofloresence was used for demonstrating the co-localization of PTB and PIAS3 in Gc1Spg mouse spermatogonial cell line. The fact that PIAS3 an E3 SUMO ligase was picked up as an interacting partner of PTB was interesting and we hypothesized that PTB might be a sumoylation substrate. Towards this, we first resorted to the prediction of sumoylation consensus motif by using SUMOPLOT. PTB indeed was found to have sumoylation consensus sites. Subsequently, in vivo sumoylation of PTB was demonstrated, where in over expression of donor protein [SUMO-1] and acceptor protein [PTB] in RAG-1 mouse kidney cell line had resulted in the identification of an approximately 67 kDa slow moving SUMO modified myc tagged PTB band apart from the bulk of unmodified 57 kDa myc-PTB. This confirmed the fact that PTB is SUMO modified only at a single consensus target site in vivo and attempts are made to map this site of modification. SUMOylation regulates diverse biological processes in vivo ranging from nucleo- cytoplasmic shuttling, alteration of protein-protein interaction, DNA protein interaction etc. PTB shuttles rapidly between the nucleus and cytoplasm in a transcription sensitive manner and the translocation of PTB to the cytoplasm, happens under the conditions of cell stress, viral infections, apoptosis and exposure of cells to genotoxic agents like doxorubicin. Phosphorylation of PTB at Ser-16 residue has been shown to modulate the nucleo-cytoplasmic shuttling of PTB, albeit shuttling can also occur irrespective of this modification. Interaction of PTB with an E3 SUMO ligase-PIAS3 and the fact that it is SUMOylated in vivo, we hypothesize that K-47 residue present in the NLS/NES might be the most probable site of this SUMO modification and SUMOylation of PTB by PIAS3 might regulate the nucleo-cytoplasmic shuttling of PTB.
3

Ribonucleoprotein complexes and protein arginine methylation : a role in diseases of the central nervous sytem

Chénard, Carol Anne. January 2008 (has links)
For the past 45 years, QKI has been studied for its role in the processes of development and central nervous system myelination using the qkv mouse. The presence of a single KH domain and the recent identification of a high-affinity binding site in mRNAs, suggests that it can bind to and regulate mRNAs through processes such as stability, splicing and transport. As a member of the STAR RNA binding family of proteins the QKI isoforms may also be involved in cell signaling pathways. / QKI's involvement in all of these processes, lead us to examine both the protein partners and the mRNA targets of the QKI complex in order to identify potentially new pathways regulated by QKI. In doing so, we identified a novel direct protein-protein interaction with PABP and for the first time described the relocalization of QKI to cytoplasmic granules following oxidative stress. In addition, in vivo mRNA interaction studies were performed and allowed the identification of approximately 100 new mRNA targets in human glioblastoma cells. One of the targets identified was VEGF mRNA. / Another QKI target mRNA is MBP, a major protein component of the myelin sheath and the candidate auto-antigen in multiple sclerosis (MS). In vivo MBP is symmetrically dimethylated on a single arginine residue. To further establish the role of the methylation of MBP in myelination, a methyl-specific antibody and an adenovirus expressing a recombinant protein arginine methyltransferase 5 (PRMT5) was generated. We show that methylated MBP is found in areas of mature myelin and that overexpression of the PRTM5 blocked the differentiation of oligodendrocytes. / Taken together these datas implicate QKI for the first time in the process of human cancer angiogenesis and could explain the vascularization defects observed in some of the qkI mutant mice. In addition, arginine methylation of MBP may prove to have an important role in the process of myelination and in the pathogenesis of demyelination and the autoimmune reaction in diseases such as MS.
4

Ribonucleoprotein complexes and protein arginine methylation : a role in diseases of the central nervous sytem

Chénard, Carol Anne. January 2008 (has links)
No description available.
5

Post-Transcriptional Regulation of the Murine Inducible Nitric Oxide Synthase Gene

Söderberg, Malin January 2005 (has links)
<p>Large amounts of nitric oxide (NO) are produced by the inducible nitric oxide synthase (iNOS) upon inflammatory stimuli. NO is a multifaceted molecule, which may have beneficial effects as an antimicrobial agent in the immune defense, or cytotoxic effects in chronic inflammations, manifested as e.g. arthritis and asthma. Understanding the mode of regulation of the iNOS gene is a prerequisite for developing intervention strategies in various pathological conditions where detrimental effects of NO need to be prevented.</p><p>Transcriptional processes of the iNOS gene regulation are well described, while post-transcriptional events have not been studied in detail. The aim of the present thesis was to investigate post-transcriptional regulatory mechanisms involving the 3’untranslated region (UTR) of the murine iNOS mRNA.</p><p>Inflammation-dependent RNA-protein interactions with the iNOS mRNA 3’UTR were characterized by RNA gel shift analysis and UV cross-linking. <i>Trans</i>-acting factors interacting with the 3’UTR were detected in mouse liver and macrophages and identified as heterogeneous nuclear ribonucleoproteins (hnRNP) I and L. Western blot revealed that reduced hnRNPI levels are responsible for the decreased interaction of hnRNPI with iNOS 3’UTR upon induction in inflammatory conditions. This decrease was reversed by the glucocorticoid dexamethasone, concomitant with decreased iNOS mRNA levels and stability. Introduction of the iNOS 3’UTR into a luciferase reporter gene reduced its expression in macrophages. Upon deletions of the binding sites for hnRNPI and hnRNPL, the luciferase expression was recovered. In addition, inflammatory stimuli increased the luciferase activity of the construct with the full-length 3’UTR, while only weak effects of the stimuli were seen on the deletion constructs.</p><p>In conclusion, the results suggest that binding of hnRNPI and hnRNPL to the iNOS mRNA 3’UTR promotes degradation of the transcript. Induction of iNOS by inflammatory stimuli dissociates the RNA-protein complex, yielding a more stable mRNA. In addition, post-transcriptional down-regulation of the iNOS gene by the anti-inflammatory glucocorticoid dexamethasone, seems to involve hnRNPI.</p>
6

Post-Transcriptional Regulation of the Murine Inducible Nitric Oxide Synthase Gene

Söderberg, Malin January 2005 (has links)
Large amounts of nitric oxide (NO) are produced by the inducible nitric oxide synthase (iNOS) upon inflammatory stimuli. NO is a multifaceted molecule, which may have beneficial effects as an antimicrobial agent in the immune defense, or cytotoxic effects in chronic inflammations, manifested as e.g. arthritis and asthma. Understanding the mode of regulation of the iNOS gene is a prerequisite for developing intervention strategies in various pathological conditions where detrimental effects of NO need to be prevented. Transcriptional processes of the iNOS gene regulation are well described, while post-transcriptional events have not been studied in detail. The aim of the present thesis was to investigate post-transcriptional regulatory mechanisms involving the 3’untranslated region (UTR) of the murine iNOS mRNA. Inflammation-dependent RNA-protein interactions with the iNOS mRNA 3’UTR were characterized by RNA gel shift analysis and UV cross-linking. Trans-acting factors interacting with the 3’UTR were detected in mouse liver and macrophages and identified as heterogeneous nuclear ribonucleoproteins (hnRNP) I and L. Western blot revealed that reduced hnRNPI levels are responsible for the decreased interaction of hnRNPI with iNOS 3’UTR upon induction in inflammatory conditions. This decrease was reversed by the glucocorticoid dexamethasone, concomitant with decreased iNOS mRNA levels and stability. Introduction of the iNOS 3’UTR into a luciferase reporter gene reduced its expression in macrophages. Upon deletions of the binding sites for hnRNPI and hnRNPL, the luciferase expression was recovered. In addition, inflammatory stimuli increased the luciferase activity of the construct with the full-length 3’UTR, while only weak effects of the stimuli were seen on the deletion constructs. In conclusion, the results suggest that binding of hnRNPI and hnRNPL to the iNOS mRNA 3’UTR promotes degradation of the transcript. Induction of iNOS by inflammatory stimuli dissociates the RNA-protein complex, yielding a more stable mRNA. In addition, post-transcriptional down-regulation of the iNOS gene by the anti-inflammatory glucocorticoid dexamethasone, seems to involve hnRNPI.
7

XIST and CoT-1 Repeat RNAs are Integral Components of a Complex Nuclear Scaffold Required to Maintain SAF-A and Modify Chromosome Architecture: A Dissertation

Kolpa, Heather J. 08 April 2016 (has links)
XIST RNA established the precedent for a noncoding RNA that stably associates with and regulates chromatin, however it remains poorly understood how such RNAs structurally associate with the interphase chromosome territory. I demonstrate that transgenic XIST RNA localizes in cis to an autosome as it does to the inactive X chromosome, hence the RNA recognizes a structure common to all chromosomes. I reassess the prevalent thinking in the field that a single protein, Scaffold Attachment Factor-A (SAF-A/hnRNP U), provides a single molecule bridge required to directly tether the RNA to DNA. In an extensive series of experiments in multiple cell types, I examine the effects of SAF-A depletion or different SAF-A mutations on XIST RNA localization, and I force XIST RNA retention at mitosis to examine the effect on SAF-A. I find that SAF-A is not required to localize XIST RNA but is one of multiple proteins involved, some of which frequently become lost or compromised in cancer. I additionally examine SAF-A’s potential role localizing repeat-rich CoT-1 RNA, a class of abundant RNAs that we show tightly and stably localize to euchromatic interphase chromosome territories, but release upon disruption of the nuclear scaffold. Overall, findings suggest that instead of “tethering” chromosomal RNAs to the scaffold, SAF-A is one component of a multi-component matrix/scaffold supporting interphase nuclear architecture. Results indicate that Cot-1 and XIST RNAs form integral components of this scaffold and are required to maintain the chromosomal association of SAF-A, substantially advancing understanding of how chromatin-associated RNAs contribute to nuclear structure.

Page generated in 0.1171 seconds