Spelling suggestions: "subject:"hexafluoroisopropylidene"" "subject:"hexafluoropropylene""
1 |
Amines aromatiques stériquement encombrées dans la réaction d'aza-Michael : effets de solvant et haute pression. / Aromatic and sterically hindered amines in aza-Michael reaction : solvent and high pressure effectsFedotova, Alena 22 May 2018 (has links)
Au cours de cette thèse, nous avons rapporté que la combinaison unique de l'hexafluoroisopropanol (HFIP), utilisé comme solvant, et des conditions hyperbares (10-15 kbar) permet une addition sans précédent de nucléophiles-1,4 pauvres, comme les amines aromatiques, sur des récepteurs Michael encombrés, sans promoteur externe. De plus, l'addition d'hétéro-Michael d'anilines fonctionnellement substituées sur des esters insaturés-α,β est définie par la différence d'acidité entre le solvant et l'amine. La réaction avec des anilines plus basiques se déroule facilement dans le méthanol. En revanche, les solvants protiques très polaires comme les alcools fluorés (HFIP et TFE) favorisent l'addition d'aza-Michael de nucléophiles plus faibles. Enfin, une méthode verte et sans catalyseur de construction de nouveaux dérivés d'acides aminés contenant des fragments d'adamantane et d'aziridine a été développée. Et il est prouvé que la réaction d'aza-Michael initie la formation de l’hétérocycle. / Along this PhD work, we have reported that the unique combination of hexafluoroisopropanol (HFIP), employed as solvent, and hyperbaric conditions (10-15 kbar) allows unprecedented 1,4-addition of poor nucleophiles such as aromatic amines onto sluggish (cumbersome) Michael acceptors without any promoter nor work-up. Moreover, The hetero-Michael addition of functionally substituted anilines to α,β-unsaturated esters is significantly defined by the difference of acidity between the solvent and the amine. Reaction with more basic anilines proceeds smoothly in methanol. In contrast, very polar protic solvent such as fluorinated alcohols (HFIP and TFE) favor the aza-Michael addition of more weak nucleophiles. Finally, green and catalyst-free method of new amino acid derivatives construction containing adamantane and aziridine fragments was developed. And it is proved that aza-Michael reaction initiates the formation of heterocycle.
|
2 |
Synergistic effect of acids and HFIP on Friedel-Crafts reactions of alcohols and cyclopropanes / L’effet synergique des acides et de l’HFIP sur les réactions de Friedel-Crafts d’alcools et des cyclopropanesVukovic, Vuk 14 December 2018 (has links)
L'activation catalytique d'alcools vers la formation déshydrative de liaisons chimiques sans pré-activation est devenue un intérêt de recherche majeur au cours des deux dernières décennies. Dans cette thèse, l’effet synergique particulier des acides forts en tant que catalyseurs dans l’hexafluoroisopropanol (HFIP) comme solvant de diverses classes de carbocations instables dans la chimie de Friedel-Crafts a été étudié. Il a été constaté que pour la première fois, les réactions de Friedel-Crafts d'alcools benzyliques primaires fortement désactivés, catalysées par un acide, se déroulaient facilement, en raison des phénomènes d'agrégation induits par l'acide dans HFIP. Une stratégie similaire a été utilisée pour l'activation d'alcools propargyliques, comme nouvelle voie d'accès sélectif aux allènes et indènes portant la fonction CF3, à partir des mêmes composés de départ. De plus, ce système catalytique a été appliqué avec succès pour les réactions de Friedel-Crafts de cyclopropanes de type non activés et donneur-accepteur. Enfin, il a été découvert que le HFIP pouvait atténuer le réarrangement de carbocation classique dans les alkylations de Friedel-Crafts, permettant l’accès aux produits avec chaînes alkyle linéaires en une seule étape à partir d’alcools aliphatiques linéaires. / The catalytic activation of alcohols towards dehydrative bond formation in the absence of pre-activation has become a major research interest over the past two decades. In this thesis, the peculiar synergistic effect of strong acids as catalysts in hexafluoroisopropanol (HFIP) as solvent on various classes of unstable carbocations in Friedel-Crafts chemistry was investigated. It was found that for the first time, Brønsted acid catalyzed Friedel-Crafts reactions of highly electronically deactivated primary benzylic alcohols proceeded smoothly due to the acid-induced aggregation phenomena in HFIP. A similar strategy was used for the activation of propargylic alcohols as a new route to selectively access CF3-substituted allenes and indenes from the same starting compounds. Furthermore, this catalytic system was succesfully applied for Friedel-Crafts reactions of unactivated and donor-acceptor cyclopropanes. Finally, it was discovered that HFIP can mitigate against classical carbocation rearrangement in Friedel-Crafts alkylations, allowing access to linear alkyl chain products in a single step from linear alkyl alcohols.
|
3 |
Characterization of Substituted Polynorbornenes for Advanced LithographyHoskins, Trevor P. J., II 23 September 2005 (has links)
A fundamental characterization of hexafluoroalcohol substituted polynorbornene (HFAPNB) was completed to improve the final photoresist formulation using these materials. In this work, it was found that the dissolution behavior of these materials was controlled by the ability of polymer chains to form hydrogen bonds. This ability to form interchain hydrogen bonds was affected by stereochemical changes in the polynorbornene backbone as molecular weights increase. These observed changes in backbone polynorbornene stereochemistry were accurately modeled using the "helix-kink" theory, first described by Ahmed and Ludovice. It was found that several material properties altered the interchain hydrogen bonding within these materials, such as the polydispersity, polymerization catalyst, and the polymer film thickness. However, none of these material properties altered the unusual dissolution behavior observed in these materials.
To improve the potential formulation of these materials, the interactions between HFAPNB and resist additives were studied. For all tested photoacid generators, it was found that some interchain hydrogen bonding occurred between resist additive molecules and HFA side groups, which retarded the dissolution rate in the formulated material. In particular, one can create a simple resist using unprotected HFAPNB polymer with an iodonium photoacid generator. Finally, a series of norbornene oligomers were evaluated as potential dissolution inhibitors for HFAPNB. It was found that the dissolution rate of HFAPNB can be completely inhibited with dissolution inhibitors at a loading of 15%.
|
4 |
HFIP as a metal-free alternative for cyclization and oxidation reactionsLlopis, Natalia 12 April 2022 (has links)
En la presente tesis se desarrolla el empleo de alcoholes fluorados, en concreto, el hexafluoroisopropano, como disolventes para el desarrollo de metodologías alternativas para las reacciones de oxidación y ciclación. De este modo, en el primer capítulo, síntesis de tetrahidrofuradons substituidos mediante la apertura cíclica de epóxidos con alquenos ricos en electrones promovida por HFIP, se ha desarrollado un método directo para la síntesis de tetrahidrofuranos a través de la adición de alquenos ricos en electrones a epóxidos empleando alcoholes fluorados, en particular el 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), como disolventes y promotores de la reacción. El procedimiento descrito da lugar a la obtención de nuevos espiro compuestos basados en tetrahidrofuranos, así como derivados de tetrahidrobenzofuranos en rendimientos moderados y bajo condiciones de reacción suaves siendo, de este modo, una metodología medioambientalmente benigna debido a su economía atómica y la disponibilidad de los reactivos. Por otro lado, en el segundo capítulo, oxidación de arenos ricos en electrones empleando sistemas HFIP-UHP, se ha descrito la oxidación directa de arenos ricos en electrones empleando el aducto de urea-peróxido de hidrógeno (UHP) como fuente oxidante y el 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) como disolvente y promotor de la reacción. Así pues, se obtuvieron una gran variedad de quinonas en rendimientos de moderados a excelentes mediante un proceso de reacción considerado como sostenible, quedando de este modo demostrado que no es necesaria la utilización de metales para dar lugar al proceso oxidativo. Dentro del tercer capítulo, síntesis directa de N,N-formamidas disubstituidas mediante la oxidación de iminas empleando sistemas de HFIP-UHP, se describe la síntesis directa de formamidas N,N-disustituidas mediante la combinación de 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) como disolvente y el aducto de urea-peróxido de hidrógeno (UHP) como fuente oxidante. Se obtuvieron de este modo una gran variedad de formamidas con unos rendimientos de buenos a excelentes bajo unas condiciones suaves de reacción, siendo también posible su síntesis a través de una secuencia de un paso. Este protocolo medioambientalmente benigno fue aplicado para la síntesis a gran escala de la N,N-difenilformamida. En el capítulo 4, ruptura oxidativa de indoles mediante el empleo de UHP o H2O2 en disolventes polares, se ha llevado a cabo la ruptura oxidativa de indoles, conocida como oxidación de Witkop, mediante el empleo de disolventes polares con una fuente oxidativa como el agua oxigenada o el aducto de urea-peróxido de hidrógeno (UHP). En efecto, el uso del HFIP, de entre los disolventes utilizados, fue seleccionado como el más recomendable para la obtención de las 2-cetoacetanilidas con altos rendimientos. Además de los indoles, este protocolo de reacción se amplió para la ruptura de los derivados de pirrol y furanos. Además, se demostró que dicho procedimiento era factible a mayor escala, pudiendo recuperar y reutilizar el disolvente hasta cuatro ciclos, dando lugar a una metodología sostenible. Finalmente, dentro del último capítulo que encontramos en la tesis, deshidrogenación de compuestos N-heterocíclicos empleando H2O2 y mediada por disolventes polares, se expone una deshidrogenación oxidativa alternativa de compuestos N-heterocíclicos mediada por una fuente oxidativa más verde, como es el agua oxigenada, en combinación con disolventes polares como el HFIP o el agua. Aunque se obtuvieron buenos resultados al emplear el agua como disolvente, se lograron alcanzar rendimientos más altos para los derivados heteroaromáticos cuando se utilizó el HFIP debido a la activación electrofílica del H2O2. Junto con la amplia gama de tetrahidroquinolinas seleccionadas, diferentes compuestos N-heterocíclicos como las tetrahidroisoquinolinas o las indolinas, también se llevaron a estudio obteniendo los correspondientes productos con bajos rendimientos. Además de esto, es importante señalar que le metodología descrita fue también implementada en gran escala, reciclando de este modo el disolvente hasta cinco veces con una ligera erosión en la conversión después de cada ciclo. Con ello, se han desarrollado metodologías alternativas donde se reduce el uso de metales como catalizadores o condiciones extremas de reacción, ya bien sea por las elevadas temperaturas o presiones. Por otro lado, se ha propuesto en todos los capítulos un mecanismo de reacción para cada uno de los procedimientos descritos, así como el reciclaje y reutilización de disolvente, o la síntesis a gran escala, demostrándose la aplicabilidad de los procesos y demostrando la sostenibilidad del proceso.
|
5 |
Microwave Spectroscopic and Theoretical Investigations on Inter/Intra Molecular BondingShahi, Abhishek January 2014 (has links) (PDF)
The importance of weak interactions between molecules to life and all parts of science and engineering is unquestionable and there have been an enormous interest in such interactions. Among all the weak interactions, hydrogen bonding is the most popular and it has enjoyed the most attention of the scientific community. Halogen bonding is gaining more popularity in the recent time, as its importance to biological molecules and crystal engineering has been recognized. In this work, a Pulsed Nozzle Fourier Transform Microwave spectrometer has been used to study the rotational spectra of molecules and hydrogen bonded complexes. Structural information is obtained from the rotational spectra. Ab initio electronic structure, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theoretical methods have been used to characterize the weak intermolecular interactions, including hydrogen bonding, halogen bonding and lithium bonding.
In Chapter I, introduction to weak interaction is discussed. A brief introduction of different experimental and theoretical methods is presented.
Chapter II discusses in detail about the different methods used to investigate weak interaction, both experimentally and theoretically, in this work. In our lab, we use Pulsed Nozzle Fourier Transform Microwave spectrometer to determine the complexes spectra and structures. We generate MW radiation with the help of electronic devices and use Balle-Flygare cavity where molecular interaction takes place. We inject the sample inside the cavity in form of supersonic molecular beam through a pulsed nozzle, parallel to MW radiation. The detailed instrumental discussion about MW spectrometer has been done in this Chapter. We extensively use theoretical methods to probe weak bonding and characterize them. Ab initio and DFT calculations are used to optimize the structure of the complexes and predict their rotational spectra. Atoms in Molecules theory and Natural Bond Orbital theory are then used with the ab initio wave functions to understand the weak interactions in depth. Discussion about these methods and software used for the analysis will also be discussed.
In Chapter III, rotational spectrum of Hexafluoroisopropanol (HFIP) monomer is presented. HFIP is an interesting molecule as it offers many possibilities as hydrogen bond donor and acceptor. It has the OH group which can both accept/donate a hydrogen bond and in addition it has a very acidic CH group. It is the only solvent that can dissolve polyethylene terephthalate, a normally difficult-to-dissolve polymer, and clearly it has unique interactions with this difficult to solve polymer. We have recorded and fitted rotational spectra of five different isotopologues of HFIP which helped us in determining its accurate structure. Though, it can exist in synclinical and antiperiplanar conformers, only the later has been detected in our molecular beam spectrometer. This happens to be the global minimum structure of HFIP. Combination of experimental observations and ab initio calculations provided many evidences which confirmed the presence of antiperiplanar conformer, experimentally. Since, the rotational constants for both conformers were very close, it was always challenging to pick up one conformer as experimentally observed structure. A prototype molecule, hexafluoroisobutene (HFIB) shows doubling of rotational transitions due to tunnelling/counter rotation of the two CF3 groups through a small barrier. Interestingly, such motion has no barrier in HFIP and hence no splitting in transitions was observed. Potential energy surface calculated for counter-rotation of the two CF3 groups is consistent with this observation. This barrier is different from eclipsed-staggered exchange barrier, observed by 60 counter rotation of both terminal CF3 groups, for which the barrier height is very large and tunnelling cannot occur. The origin/lack of the small barrier in HFIB/HFIP has been explored using Natural Bond Orbital (NBO) method which helped in understanding intramolecular bonding in these molecules. Along with HFIB, other prototype molecules were also considered for the analysis e.g. hexafluoroacetone, hexafluoroacetone imine, hexafluoroisobutane, hexafluoroisopropylamine. In the last section of this Chapter, we have discussed the generalized behaviour of molecules which have CF3-C-CF3 groups.
In Chapter IV, rotational spectrum of HFIP•••H2O complex is presented. Aqueous solution of HFIP stabilizes α-helical structure of protein, a unique property of this solvent. The main objective of this Chapter is understanding the interaction between HFIP and H2O. Microwave spectrum of HFIP•••H2O was predicted and recorded. Three isotopologues were investigated. Though, this complex could in principle have several structural conformers, detailed ab initio calculations predicted two conformers and only one was observed. Though, the rotational constants for both structures were somewhat similar, lack of a dipole transitions, larger intensity of b-dipole transitions over c-dipole transitions and isotopic substitution analysis positively confirm the structure in which HFIP acts as the hydrogen bond donor. The linear O-H•••O hydrogen bond in HFIP-H2O complex is significantly stronger than that in water dimer with the H•••O distance of 1.8 Å. The other structure for this complex, not found in experiment is cyclic with both C-H•••O and O-H•••O hydrogen bonds, both of which are bent with H•••O distances in the range 2.2-2.3 Å. Both AIM and NBO calculations have been used to characterize the hydrogen bond in this complex.
In Chapter V, a comprehensive study on hydrogen bonding, chlorine bonding and lithium bonding have been done. A typical hydrogen bonded complex can be represented as A•••H-D, where A is the acceptor unit and H-D is the hydrogen bond donor unit. Many examples are known in literature, both experimentally and theoretically, in which the A-H-D bond angles are not linear. Deviation from linearity also results in the increase in A•••H bond lengths, as noted above for the two structures of HFIP•••H2O complex. Though this has been known for long, the distance between A and D being less than the sum of their van der Waals ‘radii’ is still used as a criterion for hydrogen bonding by many. Our group has recently shown the inappropriateness of van der Waals ‘radii’ and defined hydrogen bond ‘radii’ for various donors, DH and A. A strong correlation of DH hydrogen bond ‘radii’ with the dipole moment was noted. In this Chapter, we explored in detail the angular dependence of hydrogen bond ‘radii’. Electron density topology around DH (D = F, Cl and OH) has been analyzed in detail and shown to be elliptical. For these molecules, the two constants for H atom treated as an ellipse have been determined. It is hoped that these two constants will be used widely in analyzing and interpreting H•••A distances, as a function of D-H•••A angles, rather than one ‘radius’ for H and acceptor atoms.
In Chapter VI, Detailed analysis and comparisons among hydrogen bond, chlorine bond and lithium bond, have been done. Hydrogen can be placed in group 1 as well as group 17 of the periodic table. Naturally, lithium bonding and halogen bonding have been proposed and investigated. There have been numerous investigations on the nature of hydrogen bonding and the physical forces contributing to it. In this Chapter, a total of one hundred complexes having H/Cl/Li bonding have been investigated using ab initio, AIM and NBO theoretical methods. Various criteria proposed in the literature have been examined. A new criterion has been proposed for the characterization of closed shell (ionic/electrostatic) and open shell (covalent) interactions. It has been well known that the D-H bond weakens on the D-H•••A hydrogen bond formation and H•••A bond acquires a fractional covalency. This Chapter shows that for D-Li•••A complexes, the ionicity in D-Li is reduced as the Li•••A bond is formed This comprehensive investigation of H/Cl/Li bonding has led us to propose a conservation of bond order, considering both ionic and covalent contributions to both D-X and X•••A bonds, where DX is the X-bond donor and A is the acceptor with X = H/Cl/Li.
Hydrogen bond is well understood and its definition has been recently revised [Arunan et al. Pure Appl. Chem., Vol. 83, pp. 1619–1636, 2011]. It states “The X–H•••Y hydrogen bond angle tends toward 180° and should preferably be above 110°”. Using AIM theory and other methods, this fact is examined and presented in Appendix A. In second part of appendix A, a discussion about calling H3¯ complex as trihydrogen bond and its comparison with FHF¯ complex, is presented. In Appendix B, there is tentative prediction and discussion about the HFIP dimer. Condense phase studies show that HFIP have strong aggregation power to form dimer, trimer etc. During, HFIP monomer study, we have unassigned lines which are suspected to be from HFIP dimer. These are tabulated in the Appendix B as well.
|
Page generated in 0.0712 seconds