• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • Tagged with
  • 11
  • 11
  • 9
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation into the role of the hexosamine biosynthesis pathway in hyperglycemia-induced atherosclerosis

Beriault, Daniel January 2014 (has links)
Diabetes mellitus dramatically increases the risk for atherosclerotic cardiovascular disease. It has been established that chronic hyperglycemia promotes an increase in glucose flux through the hexosamine biosynthesis pathway (HBP). Central to this pathway is glutamine:fructose-6-phosphate amidotransferase (GFAT), the rate-limiting enzyme controlling the conversion of glucose to glucosamine. We have shown that glucosamine is a potent inducer of endoplasmic reticulum (ER) stress, which is characterized by the accumulation of misfolded proteins in the ER. Chronic ER stress can initiate a multifaceted response that results in lipid accumulation, inflammation and apoptosis: the hallmark features of atherosclerosis. We hypothesized that conditions of chronic hyperglycemia, associated with diabetes mellitus, can accelerate the development of atherosclerosis by a mechanism that involves increased HBP flux resulting in glucosamine-induced ER stress and the subsequent activation of pro-atherogenic pathways. In support of the hypothesis we found that glucosamine-supplemented apoE-/- mice had elevated levels of ER stress and atherosclerosis. Mechanistically, our data showed that glucosamine induced ER stress by interfering with the lipid-linked oligosaccharide biosynthesis pathway and protein N-glycosylation. These findings support a model by which conditions of hyperglycemia promote vascular complications through a glucosamine-intermediate. / Thesis / Doctor of Philosophy (PhD) / Diabetes mellitus dramatically increases the risk for heart attacks and strokes. High blood glucose is utilized in cells through its conversion into metabolites, such as glucosamine. We hypothesized that conditions of high blood glucose can led to an increase in intracellular glucosamine which can initiate pathways involved in accelerating atherosclerosis. Our results show that this is possible in both human cells and mice.
2

A Metabolic Approach to Examining the Potential Role of the Hexosamine Biosynthetic Pathway in Diabetes-associated Atherosclerosis

Petlura, Christina 11 1900 (has links)
The number of people living with diabetes worldwide is continually increasing. The majority of these people will eventually die of cardiovascular disease, the major underlying cause of which is atherosclerosis. Despite the efforts of many researchers, gaps in our knowledge still exist regarding the molecular mechanism(s) linking the two conditions. Current data suggests that the hexosamine biosynthetic pathway (HBP) may have a role in the development of hyperglycemia-accelerated atherosclerosis. About 2-3% of glucose entering a cell is diverted into this pathway where it is modified through a series of reactions to yield the end product, UDP-N-acetylglucosamine (UDP-GlcNAc); a substrate for both N- and O-linked glycosylation of various molecules. N-linked glycosylation occurs in the endoplasmic reticulum (ER) and is an important process in the maintenance of ER homeostasis. We hypothesized that a dysregulation in the HBP can ultimately trigger ER stress – an event associated with the development of atherosclerosis. We have established a method that allows us to monitor levels of UDP-GlcNAc both in cultured cells and mouse tissues through high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Using this technique, we’ve shown that both glucosamine supplementation and overexpression of the rate limiting enzyme of the HBP, GFAT, in cultured cells results in elevated UDP-GlcNAc levels. Furthermore, glucosamine was shown to trigger ER stress. In contrast, three GFAT inhibitors that were previously identified in a high throughput screen were shown to decrease UDP-GlcNAc levels and one inhibitor, dehydroiso-β-lapachone, appears to prevent ER stress induction. Finally, we use complementary methods to show that the HBP is augmented in the livers of hyperglycemic mice. This process may play a role in the accelerated development of atherosclerosis. Together, these results provide further insight into the role of the HBP in diabetic atherosclerosis and the established methods provide a platform for the further investigation of this mechanism. / Thesis / Master of Science (MSc)
3

Increased hexosamine biosynthetic pathway flux impairs myocardial GLUT4 translocation

Williams, Gordon 03 1900 (has links)
Thesis (MSc (Physiological Sciences))--University of Stellenbosch, 2009. / Aims and Background: According to the World Health Organization type 2 diabetes will constitute a major global burden of disease within the next few decades. In agreement, reports show that rapid urbanization and lifestyle changes in South Africa are major factors responsible for these projections. Therefore, any perturbations that alter the regulatory steps that control myocardial glucose uptake by the cardiac-enrich glucose transporter, GLUT4, will lead in the development of diabetic cardiomyopathy and cardiac hypertrophy. Although considerable efforts are been put into unraveling molecular mechanisms underlying this process, less is known regarding the spatio-temporal regulation of GLUT4. In light of this, our specific aim was to establish in vitro fluorescence microscopy- and flow cytometry-based models for visualization and assessment of myocardial GLUT4 translocation using H9c2 cardiac-derived myoblasts. After successful establishment of our in vitro-based model for myocardial GLUT4 translocation, our second aim was to determine the role of the hexosamine biosynthetic pathway (HBP) in this process. Here, we employed HBP modulators to alter flux and subsequently evaluate its effect on myocardial GLUT4 translocation. To further strengthen our hypothesis, we also investigated the role of the HBP in hearts of an in vivo type 2 diabetes mouse model. Hypothesis: We hypothesize that increased flux through the HBP impairs myocardial GLUT4 translocation by greater O-linked glycosylation of the insulin signaling pathway, ultimately leading to myocardial insulin resistance. Methods: Rat cardiac-derived H9c2 myoblasts were cultured until ~ 80-90 % confluent for 3 days and thereafter subcultured in Lab-Tek chamber slides (~ 15, 000 cells per well) for 24 hours. Cells were then serum starved for 3 hours by insulin administration of 100 nM for 0, 5 and 30 minutes, respectively. We employed a method to quantify the relative proportion of GLUT4 at the sarcolemma using immunofluorescence microscopy- and flow cytometry-based models for visualization and assessment of myocardial GLUT4 translocation. Using these methods we investigated the role HBP have during GLUT4 translocation. The HBP were then activated through the following: a) high glucose and glutamine concentrations; b) low glucose and glucosamine stimulation; and c) over-expression of the HBP rate- limiting enzyme, i.e. GFAT. Subsequently, cardiac-derived myoblasts were fixed and probed for ~ 24 hours with antibodies specific for intracellular- and membrane-bound GLUT4, anti-myc GLUT4 (9E10) and O-GlcNAc. To assess GLUT4 translocation and O-GlcNAcylation we employed the following secondary antibodies: FITC Green for intracellular-bound GLUT4; and b) Texas Red for membrane-bound GLUT4 (immunofluorescence microscopy) and Phycoerythrin for flow cytometry-based model. Cells were thereafter viewed by multi-dimension imaging using an inverted system microscope (Olympus IX81) and a BD FACS Aria cell sorter for flow cytometric analysis. We also assessed HBP in an in vivo context by probing heart tissue - from insulin resistant db/db mice - with a GFAT monoclonal antibody. Results: The db/db mouse represents an ideal model to confirm our hypothesis in an in vivo context. In agreement, our preliminary results show increased GFAT expression versus heterozygous db/+ controls. Our in vitro model show myocardial GLUT4 translocation at 5 minute peak response when H9c2 cardiac-derived myoblasts were stimulated with 100 nM insulin, and GLUT4 vesicles return to normal after longer insulin stimulatory times (10, 15 and 30 minutes. Myocardial Glut4 v translocation was impaired when cells were stimulated with 100 nM wortmannin. Our transfection based model (immunofluorescence microscopy- and flow cytometry-based models) confirms 5 minute peak response under real time conditions. High glucose concentration (25 mM glucose), glucosamine concentrations (2.5 mM, 5 mM, and 10 mM) and over-expression of GFAT led to an impairment of myocardial GLUT4 translocation. Employment of an HBP activator (50 μM PUGNAc) also caused impairment of myocardial GLUT4 translocation. Myocardial GLUT4 translocation was restored when cells were treated with an HBP inhibitor (40 μM DON). High glucose concentrations (25 mM glucose), glucosamine concentrations (2.5 mM, 5 mM, and 10 mM) and over-expression of GFAT resulted in an increase in O-GlcNAcylation. HBP activation (50 μM PUGNAc) showed an increase in O-GlcNAcylation, while administration of 40 μM DON reversed this effect. Discussion and conclusion: We successfully established an in vitro experimental system to assay myocardial GLUT4 translocation. Our data show that dysregulated flux through the HBP impairs myocardial GLUT4 translocation. It is likely that the HBP becomes dysregulated during the pre-diabetic/early diabetic state and that O-GlcNAcylation of members of the insulin signaling pathway occurs during this stage. This will lead to myocardial insulin resistance, and in the long term, will contribute to the onset of the diabetic cardiomyopathy. Investigations to find unique inhibitors of this maladaptive pathway should therefore result in the development of novel therapeutic agents that will lead to a reduction in the growing global burden of disease for type 2 diabetes and associated cardiovascular diseases.
4

The hexosamine biosynthetic pathway induces gene promoter activity of the cardiac-enriched isoform of acetyl-CoA carboxylase

Imbriolo, Jamie 03 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: The cardiac isoform of acetyl-CoA carboxylase (ACCβ) produces malonyl-CoA, a potent inhibitor of mitochondrial fatty acid (FA) uptake; thus increased ACCβ activity decreases fatty acid utilization thereby potentially leading to intracellular myocardial lipid accumulation and insulin resistance (IR). Previous studies show that greater flux through the hexosamine biosynthetic pathway (HBP) contributes to the development of IR. In light of this, we hypothesize that increased HBP flux induces ACCβ gene expression thereby contributing to the onset of IR. Our initial work focused on ACCβ gene promoter regulation and suggest that the HBP modulates upstream stimulatory factor 2 (USF2) thereby inducing ACCβ gene expression. Here, we further investigated HBP-mediated regulation of ACCβ gene expression by transiently transfecting cardiac-derived H9c2 cells with an expression vector encoding the rate-limiting HBP enzyme (GFAT) ± the full length ACCβ and 4 truncated promoter-luciferase constructs, respectively. GFAT overexpression increased ACCβ gene promoter activity for the full length and 3 larger deletion constructs (p<0.001 vs. controls). However, GFAT-mediated and USF2-mediated ACCβ promoter induction was blunted when co-transfected with the -38/+65 deletion construct suggesting that USF2 binds to the proximal promoter region (near start codon). Further investigation proves that USF2 binds to ACCβ promoter and activates it, but that USF2 is not O-GlcNAc modified even though there is a strong correlation between increased O-GlcNac levels and USF2 activation of ACCβ. This would suggest that there is another O-GlcNac modified factor involved in this regulatory pathway. Our study demonstrates that increased HBP flux induces ACCβ gene promoter activity via HBP modulation of USF2. We propose that ACCβ induction reduces fatty acid oxidation, thereby leading to intracellular lipid accumulation (FA uptake>>FA oxidation) and the onset of cardiac IR. / AFRIKAANSE OPSOMMING: Die kardiale isoform van asetiel-CoA karboksilase (ACCβ) produseer maloniel-CoA, ‘n kragtige inhibeerder van mitochondriale vetsuur (VS) opname, en om hierdie rede sal verhoogde ACCβ aktiwiteit, vetsuur gebruik verlaag en potensieël aanleiding gee tot intrasellulêre miokardiale lipiedophoping en insulienweerstand (IW). Vorige studies toon dat groter fluks deur die heksosamienbiosintetiese weg (HBW) bydra tot die ontwikkeling van IW. In die lig hiervan hipotetiseer ons dat verhoogde HBW fluks, ACCβ geenuitdrukking induseer, en sodoende tot die onstaan van IW bydra. Ons aanvanglike werk het op ACCβ geenpromotorregulering gefokus, en voorgestel dat die HBW die opstroom stimuleringsfaktor 2 (USF2) moduleer en dus ACCβ geen uitdrukking induseer. Hier het ons verder die HBW-gemedieërde regulering van ACCβ-geenuitdrukking deur kortstondige tranfeksie van kardiaalverkrygde H9c2 selle met ‘n uitdrukkingsvektor wat kodeer vir die tempo-bepalende HBW ensiem (GFAT) ± die volle lengte ACCβ, en vier afgestompte promotor-lusiferase konstrukte onderskeidelik, te ondersoek. GFAT ooruidrukking het ACCβ geenpromotor aktiwiteit vir die volle lengte, en drie groter uitwissingskonstrukte verhoog (p<0.001 vs. kontrole). Hoewel GFAT- en USF2-gemedieërde ACCβ promotorinduksie tydens ko-transfeksie van die -38/+65 uitwissingskonstruk versag was, is dit voorgestel dat USF2 aan die proksimale promotor area (naby die beginkodon) bind. Verdere ondersoek bewys ook dat USF2 aan die ACCβ promotor bind en dit aktiveer, maar dat USF2 nie O-GlcNAc gemodifiseer word nie ten spyte van ‘n sterk korrelasie tussen verhoogde O-GlcNac vlakke en USF2 aktivering van ACCβ. Dit kan dus voogestel word dat daar ‘n alternatiewe O-GlcNac gemodifiseerde faktor betrokke is in hierdie reguleringsweg. Ons studie demonstreer dat verhoogde HBW fluks ACCβ geenpromotor aktiwiteit via HBW modulering van USF2 veroorsaak. Ons stel voor dat ACCβ induksie vetsuuroksidasie verlaag en so tot intrasellulêre lipiedophoping (VS opname >> VS oksidasie) en die onstaan van kardiale IW lei.
5

Does the hexosamine biosynthetic pathway play a role in mediating the beneficial effects of oleic acid in the heart?

Harris, E. R. (Eurinah Roberta) 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Background:Obesity is a growing global burden; current studies have projected the prevalence of obese / overweight individuals to increase to ~1.35 billion by 2030. A number of factors contribute to cardiovascular diseases, of which the focus of this study is what effect an increased level of free fatty acids has on the flux through the hexosamine biosynthetic pathway (HBP). It has been widely proven that an increased flux through the HBP causes an increase in protein O-GlcNAcylation, which leads to increased reactive oxygen species (ROS) production as well as an increase in cell death (apoptosis). Methods: For the purpose of this study a cell model was used. H9c2 cardiomyoblasts were cultured in 5ml Dulbecco‟s Modified Eagles Medium (DMEM) supplemented with 10% foetal bovine serum and 1% penicillin-streptomycin. The cells were then exposed to 0.25mM monounsaturated fatty acid (oleic acid) for 24, 48 and 72 hours respectively. The cultured cells were then evaluated to assess the degree ROS production, overall O-GlcNAcylation and cell death (apoptosis and necrosis), using flow cytometry and immunofluorescence microscopy. Results: We found that oleic acid causes a significant decrease in ROS production at the 48 hour time point when analysed on the flow cytometer, which indicates that oleic acid is metabolized by the cells in a independent manner. Oleic acid also caused a significant decrease in cell death at all the time intervals. With regard to the HBP, oleic acid activates this pathway but causes downstream cardioprotective effects that do not necessarily occur along this pathway. Conclusion: This study explored whether a monounsaturated fatty acid, oleic acid, is able to act as a novel cardioprotective agent. The in vitro data supports this concept and we showed that it is able to blunt oxidative stress and cell death. It was also found that although oleic acid activated the HBP, it did not mediate its protective effects via this pathway only. / AFRIKAANSE OPSOMMING: Agtergrond: Vetsug is 'n groeiende wêreldlas; huidige studies voorspel dat die voorkoms van vetsugtige / oorgewig individue toe sal neem tot ~1.35 biljoen teen 2030. Alhoewel verskeie faktore tot kardiovaskulêre siektes bydra is die fokus van hierdie studie om die effek van verhoogde vryvetsuurvlakke op die fluks deur die heksosamienbiosintestiese weg (HBW) te ondersoek. Dit is reeds bewys dat verhoogde fluks deur die HBW 'n verhoging in proteïen O-GlcNAsilering lei, wat verder tot verhoogde reaktiewe suusrtofspesies (ROS) vorming aanleiding gee en ook seldood (apoptose) verhoog. Metodes:'n Selmodel is vir die doel van hierdie studie gebruik. H9c2 kardiomioblaste is in 5ml Dulbecco's Modified Eagles Medium (DMEM) gekweek en gesupplementeer met 10% fetale beesserum en 1% penisillien-streptomysien. Die selle is blootgestel aan 'n 0.25mM mono onversadigde vetsuur (oleïensuur ) vir 24, 48 en 72 uur onderskeidelik. Die gekweekte selle is gevolglik ondersoek vir die graad van ROS ontwikkeling, algehele O-GlcNAsilering en seldood (apoptosis en nekrose), deur van vloeisitometrie en immunofluoresensie mikroskopie gebruik te maak. Resultate: Ons het bevind dat oleïensuur 'n betekenisvolle verlaging in ROS ontwikkeling teen 48 uur soos bepaal deur die vloeisitometer, veroorsaak. Dit wys daarop dat oleïensuur deur die selle op 'n onafhanklike wyse gemetaboliseer is. Oleïensuur het ook 'n betekenisvolle verlaging in seldood by alle tydsintervalle veroorsaak. Met betrekking tot die HBW het oleïensuur hierdie weg geaktiveer maar afstroom kardiobeskermings effekte versoorsaak wat nie noodwendig langs hierdie weg onstaan nie. Gevolgtrekking:Hierdie studie het die moontlikheid van 'n mono-onversadige vetsuur, oleïensuur, om op te tree as 'n nuwe kardiobeskermingsmiddel ondersoek. Die in vitro data ondersteun hierdie konsep en hier is aangetoon dat dit wel oksidatiewe stres en seldood onderdruk. Daar is verder bevind dat alhoewel oleïensuur die HBW aktiveer dit nie die beskermings effekte alleenlik via hierdie weg medieer nie.
6

Hyperglycemia-induced activation of the hexosamine biosynthetic pathway causes myocardial cell death

Rajamani, Uthra 12 1900 (has links)
Thesis (PhD (Physiological Sciences))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: OBJECTIVE – Oxidative stress increases flux through the hexosamine biosynthetic pathway (HBP) resulting in greater O-GlcNAcylation of target proteins. Since increased oxidative stress and HBP flux are associated with insulin resistance, we hypothesized that its activation leads to greater O-GlcNAcylation of BAD (pro-apoptotic) and increased myocardial apoptosis. RESEARCH DESIGN AND METHODS – To investigate our hypothesis, we employed two experimental models: 1) H9c2 cardiomyoblasts exposed to high glucose (33 mM glucose) ± HBP modulators ± antioxidant treatment vs. matched controls (5.5 mM glucose); and 2) a rat model of high fat diet-induced insulin resistance and hyperglycemia. We evaluated apoptosis in vitro by Hoechst nuclear staining, Annexin-V staining, caspase activity measurements and immunoblotting while in vivo apoptosis was assessed by immunoblotting. In vitro reactive oxygen species (ROS) levels were quantified by H2DCFDA staining (fluorescence microscopy, flow cytometry). We determined overall and BAD O-GlcNAcylation, both by immunoblotting and immunofluorescence microscopy. As BAD-Bcl-2 dimer formation enhances apoptosis, we performed immunoprecipitation analysis and immunofluorescence microscopy (co-localization) to determine BAD-cl-2 dimerization. In vivo overall O-GlcNAcylation, BAD O-GlcNAcylation and BAD-Bcl-2 dimerization was determined by immunoprecipitation and immunoblotting. 4 RESULTS – High glucose treatment of cells significantly increased the degree of apoptosis as revealed by Hoechst nuclear staining (54 ± 9%, p<0.01 vs. 5.5 mM), Annexin-V staining (43 ± 5%), caspase activity assay (26 ± 2%) and immunoblotting. In parallel, overall OGlcNAcylation (p<0.001 vs. 5.5 mM), BAD O-GlcNAcylation (p<0.05 vs. 5.5 mM) and ROS levels were increased (fluorescence microscopy – p<0.05 vs. 5.5 mM; flow cytometry – p<0.001 vs. 5.5 mM). HBP inhibition using DON and antioxidant treatment (α-OHCA) attenuated these effects while HBP activation by PUGNAc exacerbated it. Likewise, insulin resistant rat hearts exhibited significantly higher caspase-3 (p<0.05 vs. controls), overall O-GlcNAcylation (p<0.05 vs. controls) and BAD O-GlcNAcylation levels (p<0.05 vs. 5.5 mM). BAD-Bcl-2 dimer formation was increased in cells exposed to hyperglycemia [immunoprecipitation analysis and co-localization] and in insulin resistant hearts. CONCLUSIONS - Our study identified a novel pathway whereby hyperglycemia results in greater oxidative stress, resulting in increased HBP activation and increased BAD OGlcNAcylation. We also found greater BAD-Bcl-2 dimerization increasing myocardial apoptosis, suggesting that this pathway may play a crucial role in the onset of the diabetic cardiomyopathy. / AFRIKAANSE OPSOMMING: DOELWIT – Oksidatiewe stres verhoog fluks deur die heksosamien biosintetiese weg (HBW) wat in „n groter O-GlcNAsetilering van teiken proteïene resulteer. Weens die feit dat verhoogde oksidatiewe stres en HBW fluks verband hou met insulienweerstandigheid, hipotetiseer ons dat die aktivering hiervan tot groter O-GlcNAsetilering van BAD (pro-aptoptoties) en verhoogde miokardiale apoptose lei. NAVORSINGS ONTWERP EN METODES – Om die hipotese te ondersoek het ons twee modelle ontplooi: 1) H9c2 kardiomioblaste is blootgestel aan hoë glukose konsentrasie (33mM glucose) ± HBW moduleerders ± antioksidant behandeling vs. gepaarde kontrole (5.5mM glucose); en 2) „n hoë vet dieetgeïnduseerde insulienweerstandige rotmodel en hiperglukemie. Ons het apoptose in vitro deur middel van Hoescht nukleuskleuring geëvalueer, kasapase aktiwiteit bepalings en immunoblotting terwyl apoptose in vivo getoets is deur immunoblotting. Reaktiewe suurstofspesie (RSS) vlakke is deur middel van H2DCFDA verkleuring (fluoresensie mikroskopie, vloeisitometrie) bepaal. Algehele en BAD O-GlcNAsetilering is beide deur immunoblotting en immunofluoresensie mikroskopie bepaal. BAD-Bcl-2 dimeervorming bevorder apoptose, om BAD-cl-2 dimerisasie te bepaal is daar van immunopresipitering analise en immunofluoresensie mikroskopie (ko-lokalisasie) gebruik gemaak. In vivo is algehele OGlcNAsetiliering, BAD O-GlcNAsetiliering en BAD-Bcl-2 dimerisasie deur immunopresipitasie en immunoblotting bepaal. 6 RESULTE – Hoë glukose behandeling van selle het die graad van apotpose betekenisvol verhoog soos blootgelê deur Hoechst nukleuskleuring (54 ± 9%, p<0.01 vs. 5.5 mM), Annexin-V kleuring (43 ± 5%), kaspase aktiviteit assay (26 ± 2%) en immunoblotting. In parallel, algehele OGlcNAsetilering (p<0.001 vs. 5.5 mM), BAD O-GlcNAsetilering (p<0.05 vs. 5.5 mM) en RSS vlakke is verhoog (fluoresensie mikroskopie– p<0.05 vs. 5.5 mM; vloeisitometrie– p<0.001 vs. 5.5 mM). HBW inhibering deur van DON en van antioksidant behandeling gebruik te maak (α- OHCA) het hierdie effekte verlaag terwyl HBW aktivering deur PUGNAc dit verhoog het. Netso, het insulienweerstandige rotharte betekenisvolle hoë kaspase -3 (p<0.05 vs. kontrole), algeheel O-GlcNAsetilering (p<0.05 vs. kontrole) en BAD O-GlcNAsetiliering vlakke (p<0.05 vs. 5.5 mM) getoon. BAD-Bcl-2 dimeervorming is verhoog in hiperglukemies blootgestelde selle [immunopresipitering analise en ko-lokalisering] en in insulienweerstandige harte. GEVOLGTREKKINGS – Ons studie het „n nuwe weg geïdenifiseer waar hiperglukemie in groter oksidatiewe stres resulteer wat weer HBW aktivering verhoog en BAD O-GlcNAsetilering verhoog het. Ons het verder bevind dat groter BAD-Bcl-2 dimerisasie miokardiale apoptose verhoog wat voorstel dat hierdie weg „n belangrike rol in diabetiese kardiomiopatie speel.
7

Exploring underlying mechanisms driving the onset of stress-induced insulin resistance

Otto, Delita 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: Physical and psychological stressors trigger activation of the hypothalamo-pituitary-adrenocortical (HPA) axis that leads to enhanced secretion of glucocorticoids e.g. cortisol. Moreover, chronic activation of this pathway may elevate oxidative stress that is linked to the onset of insulin resistance and cardiovascular diseases (CVD). Our laboratory previously found that oxidative stress increases flux through metabolic circuits such as the hexosamine biosynthetic pathway (HBP), in effect increasing its modification of target proteins post-transcriptionally with O-GlcNAc moeities. This in turn may alter protein function and contribute to the onset of myocardial insulin resistance and impaired contractile function. Since the underlying mechanisms linking chronic stress to cardiometabolic pathophysiology are poorly understood, we hypothesised that cortisol elicits myocardial oxidative stress, HBP activation, and decreased glucose uptake (due to attenuated glucose transport functionality) with detrimental outcomes, i.e. insulin resistance and apoptosis. To investigate this hypothesis we established an in vitro model using HL-1 cardiomyocytes, with which we evaluated the degree of O-GlcNAcylation and oxidative stress in response to a range of time-dose treatments with dexamethasone (synthetic glucocorticoid). Glucose transporter 4 (GLUT4) translocation to the sarcolemma was also assessed. In agreement with the literature, results suggest that GLUT4 translocation is significantly decreased subsequent to dexamethasone treatment. Although no significant differences were observed with regards to oxidative stress or O-GlcNAcylation, the data show that dexamethasone increased the latter with a maximal effect after two hours exposure to the 10-6 M dose. Although our results were not conclusive, the data suggest a potential novel link between dexamethasone exposure, HBP activation and decreased GLUT4 translocation. Based on our findings we propose that detrimental effects of chronic stress on the heart may be mediated by increased HBP flux. Given that glucocorticoid excess and GLUT4 dysregulation have been associated with insulin resistance (and related metabolic derangements and diseases), these results provide new targets for potential therapeutic agents. / AFRIKAANSE OPSOMMING: Fisiese sowel as psigologiese stressors veroorsaak die aktivering van die hipotalamiese-hipo seale-bynier (HHB) pad wat lei tot die verhoogde sekresie van glukokortikoïede soos kortisol. Kroniese aktivering van hierdie pad kan ook oksidatiewe stres verhoog wat weer tot insulienweerstandigheid en kardiovaskulêre siektes (KVS) kan lei. Navorsing uit ons laboratorium het voorheen bewys dat oksidatiewe stres 'n toename in vloei deur metaboliese paaie soos die heksoamine biosintetiese pad (HBP) kan veroorsaak deur die modi sering van teikenproteïene met O-GlcNAc motiewe. Dit kan weer proteïen funksie verander en bydra tot die ontstaan van miokardiale insulienweerstandigheid en verswakte kontraktiele funksie. Die onderliggende meganismes wat kroniese stres aan kardiometaboliese pato siologie verbind word nog nie goed verstaan nie, daarom is ons hipotese dat kortisol miokardiale oksidatiewe stres veroorsaak, die HBP pad aktiveer, en glukose opname verminder (deur die funksionele onderdrukking van glukose transport), wat nadelige uitkomste soos insulienweerstandigheid en apoptose tot gevolg kan hê. Om hierdie hipotese te ondersoek, is 'n in vitro model van HL-1 kardiomiosiete gebruik waarmee die graad van O-GlcNAsilering en oksidatiewe stres in reaksie op 'n reeks tyd-konsentrasie behandelings met deksametasoon (sintetiese glukokortikoïed), bepaal is. Glukose transporter 4 (GLUT4) translokasie na die sarkolemma is ook geasseseer. In ooreenstemming met die literatuur, is GLUT4 translokasie insiggewend onderdruk tydens deksometasoon behandeling. Alhoewel geen insiggewende verskille rakende oksidatiewe stres en O-GlcNAsilering gevind is nie, het ons data aangedui dat laasgenoemde deur deksametasoon vermeerder het na twee ure van blootstelling aan die 10-6 M konsentrasie. Alhoewel ons resultate geen afdoende bewys lewer nie, stel dit wel voor dat daar 'n potensiële verbintenis tussen deksametasoon behandeling en 'n afname in GLUT4 translokasie is. Gebasseer op ons bevindings, stel ons voor dat die nadelige e ekte van kroniese stres op die hart bemiddel kan word deur 'n toename in vloei deur die HBP. Gegewe dat 'n oormaat glukokortikoïede en GLUT4 wanregulering geassosieer is met insulien weerstandigheid (en verbandhoudende metaboliese veranderinge en siektes), verskaf hierdie resultate nuwe teikens vir potensiële terapeutiese ingrepe.
8

Increased flux through the hexosamine biosynthetic pathway leads to the induction of acetol-CoA caboxylase gene expression in the heart

Imbriolo, Jamie 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2008. / ENGLISH ABSTRACT: Gene expression of the cardiac isoform of acetyl-CoA carboxylase (ACCb) is induced in a glucose-dependent manner. ACCb produces malonyl-CoA, a potent inhibitor of mitochondrial fatty acid uptake. Previous studies show that increased flux through the hexosamine biosynthetic pathway (HBP) under hyperglycaemic conditions may contribute to the development of insulin resistance. In light of this, we hypothesised that increased HBP flux induces cardiac ACCb gene expression thereby contributing to the onset of insulin resistance. We tested our hypothesis by transiently transfecting cardiac-derived rat H9c2 myoblasts with a 1,317 bp human ACCb promoter-luciferase construct (pPIIb-1317) and an expression construct encoding the rate-limiting step of the HBP i.e. glutamine: fructose 6-phosphate amidotransferase (GFAT). Overexpression of GFAT increased ACCb gene promoter activity by 75 ± 23% versus controls (n=6, p<0.001). When cotransfection experiments were repeated in the presence of varying concentrations of L-glutamine (0 mM, 4 mM, 8 mM), a substrate for the HBP, ACCb promoter activity was dose-dependently increased. To further corroborate these findings, we employed two inhibitors of GFAT, i.e. 40 μM azaserine and 40 μM 6-diazo-5-oxo-Lnorleucine were administered to transfected cells for a period of 24 hours. Here both azaserine and 6-diazo-5-oxonorleucine attenuated ACCb gene promoter activity. In agreement, co-transfections with two dominant negative GFAT constructs also diminished ACCb gene promoter activity. We next inhibited two enzymes of the HBP acting downstream of GFAT, i.e. O-GlcNAc transferase and O-GlcNAcase using alloxan (0.1 mM, 1 mM and 2 mM) and streptozotocin (5 mM and 10 mM), respectively, for a period of 24 hours. Addition of alloxan attenuated ACCb gene promoter activity by 35.6 ± 1.9% (n=16, p<0.001) and streptozotocin increased activity by 32 ± 12% (n=12, p<0.001). We also investigated USF1 and USF2 as transcriptional regulatory candidates for HBP-induced ACCβ promoter regulation. Our data implicates USF2 as an important transcriptional regulator of HBP-induced ACCβ promoter regulation. In summary, this study demonstrates that increased flux through the hexosamine biosynthetic pathway induces ACCb gene promoter activity. We further propose that such an induction would reduce cardiac fatty acid oxidation, thereby leading to intracellular lipid accumulation due to a mismatch between sarcolemmal FA uptake and mitochondrial FA oxidation in the insulin resistant setting (i.e. hyperlipidaemia). / AFRIKAANSE OPSOMMING: Geen uitdrukking van die kardiale isoform asetiel-KoA karboksilase (ACCb) word in ‘n glukose afhanklike wyse geïnduseer. ACCb produseer maloniel-KoA, ‘n kragtige inhibeerder van mitochondriale vetsuuropname. Vorige studies toon aan dat verhoogde fluks deur die heksosamien biosintestiese weg (HBW) onder hiperglukemiese toestande bydra tot die ontwikkeling van insulienweerstand. In die lig hiervan, word daar gehipotetiseer dat verhoogde HBP fluks kardiale ACCb geenuitdrukking induseer en so bydra tot die ontstaan van insulienweerstand. Ons hipotese is getoets deur die kardiale afkomstige rot H9c2 mioblaste met ‘n 1.317 bp mens ACCb-lusiferase promotor konstruk (pPII-1317) te transfekteer en ‘n uitdrukking te konstrueer wat die tempo bepalende stap van HBP i.e. glutamien: fruktose-6-fosfaat amidotransferase (GFAT) kodeer. Ooruitdrukking van GFAT verhoog ACCb geenpromotor aktiviteit deur 75 ± 23% teenoor kontrole (n=6, p<0.001). Die herhaling van ko-transfeksie eksperimente is herhaal in die teenwoordigheid van variëerbare L-glutamienkonsentrasies (0 mM, 4 mM, 8 mM), ’n substraat vir die HBP, ACCb promotor aktiwiteit is dosisafhanglik verhoog. Om die bevindinge verder te staaf, is twee inhibeerders van GFAT, i.e. 40 μM azaserien en 40 μM 6-diazo-5-oxo-L-norleusien aan transfeksie selle toegedien vir ’n tydperk van 24 uur. Beide azaserien en 6-diazo-5-oxo-L-norleusien verlaag ACCb geenpromotor aktiwiteit. In ooreenstemming met die bogenoemde het ko-transfeksies met twee dominante negatiewe GFAT konstrukte ook ACCb geenpromoter aktiwiteit verminder. Die volgende stap is om twee ensieme van die HBP wat stroomaf van GFAT aktief is, vir ‘n periode van 24 uur te inhibeer i.e. O-GlcNAc transferase en O-GlcNAcase deur alloxan (0.1 mM, 1 mM en 2 mM) and streptozotosien (5 mM en 10 mM) onderskeidelik vir ‘n 24 uur periode te gebruik. Toevoeging van alloxan het die ACCb geenpromotor aktiwiteit by 35.6 ± 1.9% (n=16, p<0.001) verlaag en streptozotosien aktiwiteit verhoog by 32 ± 12% (n=12, p<0.001). Ons het ook die USF1 en USF2 as transkripsie regulerings kandidate vir HBP-geïnduseerde ACCβ promotor regulering ondersoek. Ons data impliseer dat USF2 as ‘n belangrike transkripsie reguleerder van HBP-geïndiseerde ACCβ promotor regulering is. Samevattend het hierdie studie demonstreer dat verhoogde fluks deur die hexosamien biosintetiese weg ACCb geenpromotor aktiwiteit induseer. Ons stel verder voor dat hierdie induksie die kardiale vetsuuroksidasie verlaag wat daartoe lei dat intrasellulêre lipied akkumulasie as gevolg van onparing tussen sarkolemma vetsuuropname en mitochondriale vetsuuroksidasie in ’n insulien weerstandige situasie (i.e. hiperlipidaemia).
9

A High-Throughput Screening Campaign To Discover Novel Inhibitors Of Human L-glutamine: D-fructose-6-phosphate Amidotransferase 1

Walter, Lisa A. 10 1900 (has links)
<p>Human L-glutamine:D-fructose-6-phosphate amidotransferase 1 (hGFAT1) is the first and rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP) and is a potential target to help prevent secondary complications of type II diabetes. GFAT catalyzes the irreversible reaction between L-glutamine and D-fructose-6-phosphate to produce L-glutamate and D-glucosamine-6-phosphate. hGFAT1 is not commercially available and is difficult to obtain from natural sources. Thus, a recombinant method to generate and purify the enzyme was developed and is discussed herein.</p> <p>There are only a handful of known inhibitors available to study the enzyme and the majority of these are toxic, non-specific, or substrate analogs. A high-throughput screening campaign was undertaken in pursuit of novel hGFAT1 inhibitors. The bioactive subset of the Canadian Compound Collection was assayed in duplicate for GFAT inhibitory activity using a modified version of the Morgan-Elson assay. Out of the 3950 bioactives, 9 were identified as lead compounds. All of the compounds identified from the bioactive collection are novel GFAT inhibitors.</p> <p>A structure-activity relationship (SAR) analysis was performed on the lead compounds. Derivatives of the leads were also purchased or synthesized for inhibitory testing. Four distinct classes of compounds were identified as GFAT inhibitors: isoquinolines, aminothiazoles, pyridinones and quinones. The most potent lead compound elucidated from the SAR was dehydroiso-β-lapachone (IC<sub>50</sub> 1.5±0.5 µM). The mode of inhibition of dehydroiso-β-lapachone was determined to be non-competitive for both binding domains of recombinant hGFAT1.</p> <p>To validate the lead compounds as inhibitors of native hGFAT1 and to determine their cell permeability, a cell based assay was developed. HepG2 cell cultures were treated with an inhibitor and HBP metabolism was determined by measuring the levels of the end-product uridine diphosphate <em>N</em>-acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc was separated and detected by UPLC-ESI-TOF-MS and metabolite levels were normalized to cell concentration. The leads, alloxan, lapachol and amrinone all displayed hGFAT1 inhibition in cell culture.</p> / Doctor of Philosophy (PhD)
10

Aberrations in Cytokine Signaling in Leukemia: Variations in Phosphorylation and O-GlcNAcylation

Tomic, Jelena 31 August 2012 (has links)
Tumor-induced immunosuppression can occur by multiple mechanisms, each posing a significant obstacle to immunotherapy. Evidence presented in this dissertation suggests that aberrant cytokine signaling, as a result of altered metabolism of Chronic Lymphocytic Leukemia (CLL) cells, confers a selective advantage for tumor survival and growth. Cells from CLL patients with aggressive disease (as indicated by high-risk cytogenetics) were found to exhibit prolongation in Interferon (IFN)-induced STAT3 phosphorylation, and increased levels of reactive oxygen species (ROS) in these cells reflected these signaling processes. Changes in the relative balance of phospho-STAT3 and phospho-STAT1 levels, in response to combinations of IL-2 + Toll-like receptor (TLR)-7 agonist + phorbol esters, as well as IFN, were associated with the immunosuppressive and immunogenic states of CLL cells. In addition, immunosuppressive leukemic cells were found to express high levels of proteins with O-linked N-acetylglucosamine (O-GlcNAc) modifications, due to increased metabolic activity through the Hexosamine Biosynthetic Pathway (HBP), which caused impaired intracellular signaling responses and affected disease progression. A conclusion of the studies presented here is that the intrinsic immunosuppressive properties of leukemic cells may be overcome by agents such as Resveratrol that target metabolic pathways of these cells.

Page generated in 0.0399 seconds