Spelling suggestions: "subject:"hidróxidos"" "subject:"hidróxido""
11 |
Hidroperóxidos de lipídios como fonte biológica de oxigênio singlete: estudos com marcação isotópica, espectrometria de massas e luminescência / Lipid hydroperoxides as a biological source of singlet oxygen: studies using isotopic labelling, mass spectrometry and luminescenceMiyamoto, Sayuri 08 April 2005 (has links)
Evidências apontam para o envolvimento da peroxidação lipídica em diversas patologias. Os hidroperóxidos de lipídios (LOOH) são os produtos primários da peroxidação lipídica e sua decomposição resulta em produtos de maior reatividade e toxicidade, como os radicais peroxila. Esses radicais desempenham papel importante na propagação da peroxidação lipídica e também podem gerar oxigênio molecular singlete (1O2) por meio da combinação de dois radicais peroxila. Neste trabalho investigamos a possibilidade dos LOOH, em particular dos hidroperóxidos de ácido linoléico (LAOOH), de servirem como fonte 1O2 na presença de oxidantes de relevância biológica como metais, peroxinitrito ou ácido hipocloroso. A formação de 1O2 foi claramente demonstrada na reação de LAOOH com esses oxidantes pelas detecções (i) da emissão bimolecular na região espectral do vermelho (λ>570 nm), (ii) da emissão monomolecular no infravermelho-próximo (λ=1270 nm), (iii) do espectro de emissão no infravermelho, e (iv) da intensificação e supressão da luminescência na presença de D2O e azida, respectivamente. Além disso, os mecanismos de reação foram estudados utilizando LAOOH marcados com oxigênio-18 (LA18O18OH) e captadores químicos específicos para 1O2 aliada à tecnica de detecção por HPLC acoplada à espectrometria de massa. Os resultados mostraram a formação de 1O2 marcado [18(1O2) ] na reação de LA18O18OH com os três oxidantes, revelando que os átomos de oxigênio do 1O2 são derivados do hidroperóxido. Em conjunto, as evidências obtidas levam à conclusão de que os LOOH podem servir como fontes potenciais de 1O2 em sistemas biológicos em situações onde haja a coexistência de LOOH e metais, peroxinitrito ou ácido hipocloroso. / Evidences point to the involvement of lipid peroxidation in several diseases. Lipid hydroperoxides (LOOH) are the primary products of lipid peroxidation and their decomposition generates more reactive and toxic compounds, such as peroxyl radicals. These radicals play an important role in the propagation of lipid peroxidation and may also generate singlet molecular oxygen (1O2) by the combination of two peroxyl radicals. In this study we have investigated the possibility of LOOH, in particular linoleic acid hydroperoxide (LAOOH), to be a source of 1O2 in the presence of biologically relevant oxidants such as, metal ions, peroxynitrite or hypochlorous acid. The formation of 1O2 was clearly demonstrated in the reaction of LAOOH with all the three tested oxidants by detecting: (i) the dimol light emission in the red spectral region (λ>570 nm), (ii) the monomol light emission in the near-infrared region (λ=1270 nm), (iii) the infrared light emission spectrum, and (iv) the enhancing effect of deuterium oxide and the quenching effect of azide on light emission. Furthermore, the mechanism was studied using LAOOH labeled with 18-oxygen isotope (LA18O18OH) and specific 1O2 chemical traps in combination with HPLC coupled to mass spectrometry detection. The results have showed the formation of 18-oxygen labeled 1O2 [18(1O2) ] in the reaction of LA18O18OH with the three oxidants, indicating that oxygen atoms in 1O2 are derived from the hydroperoxide. Altogether, the obtained evidences lead to the conclusion that LOOH may serve as a potential source of 1O2 in biological systems, in situations where LOOH can interact with metals, peroxynitrite or hypochlorous acid.
|
12 |
Geração de oxigênio molecular singlete: termólise de endoperóxidos naftalênicos e reações de hidroperóxidos lipídicos com íon nitrônio / Generation of singlet molecular oxygen: thermolysis of naphthalene endoperoxides and reaction of lipid hydroperoxides with nitronium ionScalfo, Alexsandra Cristina 09 May 2014 (has links)
Oxigênio molecular singlete [O2(1Δg)], uma espécie excitada, desempenha um papel importante em sistemas químicos e biológicos. É um poderoso eletrófilo, que reage com moléculas ricas em elétrons através de cicloadições [2+2], [4+2] e reações tipo ene. Ácidos graxos poliinsaturados, proteínas e DNA são alvos vulneráveis para o ataque de O2(1Δg). Os endoperóxidos de derivados de naftaleno são muito úteis e versáteis como fontes limpas de O2(1Δg), uma vez que são quase quimicamente inertes. Por outro lado, o desenvolvimento de novas fontes de O2(1Δg) ainda é uma tarefa desafiadora. Os derivados de naftaleno são capazes de armazenar O2(1Δg) por reação de cicloadiação [4+2] e liberá-lo em temperaturas amenas, o que os torna muito adequados para uso em estudos biológicos. A síntese destes compostos está baseada em modificações nos substituintes ligados nas posições 1 e 4 da estrutura do naftaleno. Na primeira parte deste trabalho, a síntese de três endoperóxidos derivados do naftaleno solúveis em água foi realizada. DHPNO2 e NDPO2 foram preparados de acordo com métodos similares descritos na literatura. A síntese de um novo endoperóxido dicatiônico derivado do naftaleno (NBTEO2) foi desenvolvida, contendo dois grupos de cloreto de amônio quaternário nas posições 1,4 do anel aromático. O intermediário chave na síntese dos três endoperóxidos é o BBMN, o qual foi preparado a partir da bromação radicalar do 1,4-dimetilnaftaleno. Nossos resultados têm indicado que este composto dicatiônico pode ser uma fonte química de O2(1Δg) em potencial, e pode ser explorado em estudos com mitocôndrias, onde o papel biológico de O2(1Δg) é investigado. A segunda parte deste trabalho foi dedicada a investigar a geração de O2(1Δg) através das reações entre hidroperóxidos de lipídeos (ácido oleico, linoleico e colesterol), hidroperóxidos orgânicos (cumeno e t-butila), bem como peróxido de hidrogênio com NO2+, utilizando o composto NO2BF4. Evidências da geração de O2(1Δg) foram obtidas através de medidas de emissão de luz na região do infravermelho próximo, no comprimento de onda de 1270 nm. Além disso, a prova inequívoca da presença de O2(1Δg) foi demonstrada através da caracterização espectral direta da emissão de luz no infravermelho próximo. O uso de azida de sódio como captador físico de O2(1Δg), juntamente com as medidas da quimiluminescência, contribuíram para identificar a geração desta espécie na reação entre hidroperóxidos de lipídeos e NO2BF4. Embora seja uma abordagem química, nossos resultados adicionaram informações importantes sobre a peroxidação lipídica, principalmente quando espécies reativas de nitrogênio estão envolvidas. O O2(1Δg) poderia ser gerado como um subproduto da peroxidação lipídica em condições onde espécies reativas de nitrogênio interagem com hidroperóxidos lipídicos. Isto pode contribuir para um melhor entendimento deste evento complexo com implicações fisiológicas ou fisiopatológicas. / Singlet molecular oxygen [O2(1Δg)], an excited species, plays an important role in chemical and biological systems. It is a powerfull electrophile, reacting with electron rich molecules through [2+2] cycloadditions, [4+2] cycloadditions and ene reactions. Polyunsaturated fatty acids, proteins and DNA are vulnerable targets for O2(1Δg) reaction. Naphthalene derivatives endoperoxides are very useful and versatile as a clean source of O2(1Δg), once they are almost chemically inert. On the other hand, developing new sources of O2(1Δg) are still a challenging task. Naphthalene derivatives are able to trap O2(1Δg) by [4+2] cycloaddition and release it in mild temperatures, which make them very suitable for biological studies. The synthesis of these compounds is based on modifications in substituents bonded in 1,4 positions of nafhthalene backbone. In the first part of present work, the synthesis of three water soluble naphthalene derivatives endoperoxides was performed. DHPNO2, NDPO2 were prepared according to similar methods described in the literature. A new di-cationic naphthalene derivative endoperoxide (NBTEO2) synthesis was developed, containing two quaternary ammonium chloride groups in 1,4-positions of aromatic ring. The key intermediate: for the synthesis of the three endoperoxides is the compound BBMN, which was prepared from radicalar bromination of 1,4-dimethylnaphthalene. Our results have indicated that this di-cationic compound can be a potential chemical source of O2(1Δg) and may be explored in mitochondrial studies where O2(1Δg) biological role is investigated. The second part of this work is dedicated to the investigation of generation of O2(1Δg) through reaction of lipid hydroperoxides (oleic acid, linoleic acids and cholesterol), organic hydroperoxides (cumene and t-butyl), as well as hydrogen peroxide with NO2+, using the compound NO2BF4. Evidences of generation of O2(1Δg) were obtained recording the monomol light emission measurement in near infrared region at wavelength of 1270 nm. Moreover, the proof of the presence of O2(1Δg) was unequivocally demonstrated by the direct spectral characterization of near-infrared light emission. The use of sodium azide as a physical quencher of O2(1Δg), associated to chemiluminescence measurements, contributed to identify the generation of this species in the reaction of lipid hydroperoxides and NO2BF4. Although, it is a chemical approach, our results add important information about lipid peroxidation, mainly when reactive species of nitrogen are involved. O2(1Δg) might be generate as a byproduct of lipid peroxidation, in conditions where reactive nitrogen species interact with lipid hydroperoxides. This might contribute to a better understand of this complex event and physiological or physiopathological implications
|
13 |
Geração de oxigênio molecular singlete: termólise de endoperóxidos naftalênicos e reações de hidroperóxidos lipídicos com íon nitrônio / Generation of singlet molecular oxygen: thermolysis of naphthalene endoperoxides and reaction of lipid hydroperoxides with nitronium ionAlexsandra Cristina Scalfo 09 May 2014 (has links)
Oxigênio molecular singlete [O2(1Δg)], uma espécie excitada, desempenha um papel importante em sistemas químicos e biológicos. É um poderoso eletrófilo, que reage com moléculas ricas em elétrons através de cicloadições [2+2], [4+2] e reações tipo ene. Ácidos graxos poliinsaturados, proteínas e DNA são alvos vulneráveis para o ataque de O2(1Δg). Os endoperóxidos de derivados de naftaleno são muito úteis e versáteis como fontes limpas de O2(1Δg), uma vez que são quase quimicamente inertes. Por outro lado, o desenvolvimento de novas fontes de O2(1Δg) ainda é uma tarefa desafiadora. Os derivados de naftaleno são capazes de armazenar O2(1Δg) por reação de cicloadiação [4+2] e liberá-lo em temperaturas amenas, o que os torna muito adequados para uso em estudos biológicos. A síntese destes compostos está baseada em modificações nos substituintes ligados nas posições 1 e 4 da estrutura do naftaleno. Na primeira parte deste trabalho, a síntese de três endoperóxidos derivados do naftaleno solúveis em água foi realizada. DHPNO2 e NDPO2 foram preparados de acordo com métodos similares descritos na literatura. A síntese de um novo endoperóxido dicatiônico derivado do naftaleno (NBTEO2) foi desenvolvida, contendo dois grupos de cloreto de amônio quaternário nas posições 1,4 do anel aromático. O intermediário chave na síntese dos três endoperóxidos é o BBMN, o qual foi preparado a partir da bromação radicalar do 1,4-dimetilnaftaleno. Nossos resultados têm indicado que este composto dicatiônico pode ser uma fonte química de O2(1Δg) em potencial, e pode ser explorado em estudos com mitocôndrias, onde o papel biológico de O2(1Δg) é investigado. A segunda parte deste trabalho foi dedicada a investigar a geração de O2(1Δg) através das reações entre hidroperóxidos de lipídeos (ácido oleico, linoleico e colesterol), hidroperóxidos orgânicos (cumeno e t-butila), bem como peróxido de hidrogênio com NO2+, utilizando o composto NO2BF4. Evidências da geração de O2(1Δg) foram obtidas através de medidas de emissão de luz na região do infravermelho próximo, no comprimento de onda de 1270 nm. Além disso, a prova inequívoca da presença de O2(1Δg) foi demonstrada através da caracterização espectral direta da emissão de luz no infravermelho próximo. O uso de azida de sódio como captador físico de O2(1Δg), juntamente com as medidas da quimiluminescência, contribuíram para identificar a geração desta espécie na reação entre hidroperóxidos de lipídeos e NO2BF4. Embora seja uma abordagem química, nossos resultados adicionaram informações importantes sobre a peroxidação lipídica, principalmente quando espécies reativas de nitrogênio estão envolvidas. O O2(1Δg) poderia ser gerado como um subproduto da peroxidação lipídica em condições onde espécies reativas de nitrogênio interagem com hidroperóxidos lipídicos. Isto pode contribuir para um melhor entendimento deste evento complexo com implicações fisiológicas ou fisiopatológicas. / Singlet molecular oxygen [O2(1Δg)], an excited species, plays an important role in chemical and biological systems. It is a powerfull electrophile, reacting with electron rich molecules through [2+2] cycloadditions, [4+2] cycloadditions and ene reactions. Polyunsaturated fatty acids, proteins and DNA are vulnerable targets for O2(1Δg) reaction. Naphthalene derivatives endoperoxides are very useful and versatile as a clean source of O2(1Δg), once they are almost chemically inert. On the other hand, developing new sources of O2(1Δg) are still a challenging task. Naphthalene derivatives are able to trap O2(1Δg) by [4+2] cycloaddition and release it in mild temperatures, which make them very suitable for biological studies. The synthesis of these compounds is based on modifications in substituents bonded in 1,4 positions of nafhthalene backbone. In the first part of present work, the synthesis of three water soluble naphthalene derivatives endoperoxides was performed. DHPNO2, NDPO2 were prepared according to similar methods described in the literature. A new di-cationic naphthalene derivative endoperoxide (NBTEO2) synthesis was developed, containing two quaternary ammonium chloride groups in 1,4-positions of aromatic ring. The key intermediate: for the synthesis of the three endoperoxides is the compound BBMN, which was prepared from radicalar bromination of 1,4-dimethylnaphthalene. Our results have indicated that this di-cationic compound can be a potential chemical source of O2(1Δg) and may be explored in mitochondrial studies where O2(1Δg) biological role is investigated. The second part of this work is dedicated to the investigation of generation of O2(1Δg) through reaction of lipid hydroperoxides (oleic acid, linoleic acids and cholesterol), organic hydroperoxides (cumene and t-butyl), as well as hydrogen peroxide with NO2+, using the compound NO2BF4. Evidences of generation of O2(1Δg) were obtained recording the monomol light emission measurement in near infrared region at wavelength of 1270 nm. Moreover, the proof of the presence of O2(1Δg) was unequivocally demonstrated by the direct spectral characterization of near-infrared light emission. The use of sodium azide as a physical quencher of O2(1Δg), associated to chemiluminescence measurements, contributed to identify the generation of this species in the reaction of lipid hydroperoxides and NO2BF4. Although, it is a chemical approach, our results add important information about lipid peroxidation, mainly when reactive species of nitrogen are involved. O2(1Δg) might be generate as a byproduct of lipid peroxidation, in conditions where reactive nitrogen species interact with lipid hydroperoxides. This might contribute to a better understand of this complex event and physiological or physiopathological implications
|
14 |
Hidroperóxidos de lipídios como fonte biológica de oxigênio singlete: estudos com marcação isotópica, espectrometria de massas e luminescência / Lipid hydroperoxides as a biological source of singlet oxygen: studies using isotopic labelling, mass spectrometry and luminescenceSayuri Miyamoto 08 April 2005 (has links)
Evidências apontam para o envolvimento da peroxidação lipídica em diversas patologias. Os hidroperóxidos de lipídios (LOOH) são os produtos primários da peroxidação lipídica e sua decomposição resulta em produtos de maior reatividade e toxicidade, como os radicais peroxila. Esses radicais desempenham papel importante na propagação da peroxidação lipídica e também podem gerar oxigênio molecular singlete (1O2) por meio da combinação de dois radicais peroxila. Neste trabalho investigamos a possibilidade dos LOOH, em particular dos hidroperóxidos de ácido linoléico (LAOOH), de servirem como fonte 1O2 na presença de oxidantes de relevância biológica como metais, peroxinitrito ou ácido hipocloroso. A formação de 1O2 foi claramente demonstrada na reação de LAOOH com esses oxidantes pelas detecções (i) da emissão bimolecular na região espectral do vermelho (λ>570 nm), (ii) da emissão monomolecular no infravermelho-próximo (λ=1270 nm), (iii) do espectro de emissão no infravermelho, e (iv) da intensificação e supressão da luminescência na presença de D2O e azida, respectivamente. Além disso, os mecanismos de reação foram estudados utilizando LAOOH marcados com oxigênio-18 (LA18O18OH) e captadores químicos específicos para 1O2 aliada à tecnica de detecção por HPLC acoplada à espectrometria de massa. Os resultados mostraram a formação de 1O2 marcado [18(1O2) ] na reação de LA18O18OH com os três oxidantes, revelando que os átomos de oxigênio do 1O2 são derivados do hidroperóxido. Em conjunto, as evidências obtidas levam à conclusão de que os LOOH podem servir como fontes potenciais de 1O2 em sistemas biológicos em situações onde haja a coexistência de LOOH e metais, peroxinitrito ou ácido hipocloroso. / Evidences point to the involvement of lipid peroxidation in several diseases. Lipid hydroperoxides (LOOH) are the primary products of lipid peroxidation and their decomposition generates more reactive and toxic compounds, such as peroxyl radicals. These radicals play an important role in the propagation of lipid peroxidation and may also generate singlet molecular oxygen (1O2) by the combination of two peroxyl radicals. In this study we have investigated the possibility of LOOH, in particular linoleic acid hydroperoxide (LAOOH), to be a source of 1O2 in the presence of biologically relevant oxidants such as, metal ions, peroxynitrite or hypochlorous acid. The formation of 1O2 was clearly demonstrated in the reaction of LAOOH with all the three tested oxidants by detecting: (i) the dimol light emission in the red spectral region (λ>570 nm), (ii) the monomol light emission in the near-infrared region (λ=1270 nm), (iii) the infrared light emission spectrum, and (iv) the enhancing effect of deuterium oxide and the quenching effect of azide on light emission. Furthermore, the mechanism was studied using LAOOH labeled with 18-oxygen isotope (LA18O18OH) and specific 1O2 chemical traps in combination with HPLC coupled to mass spectrometry detection. The results have showed the formation of 18-oxygen labeled 1O2 [18(1O2) ] in the reaction of LA18O18OH with the three oxidants, indicating that oxygen atoms in 1O2 are derived from the hydroperoxide. Altogether, the obtained evidences lead to the conclusion that LOOH may serve as a potential source of 1O2 in biological systems, in situations where LOOH can interact with metals, peroxynitrite or hypochlorous acid.
|
15 |
Hidroperóxidos de lipídios como fontes de oxigênio molecular singlete (O2 [1Δg]), detecção e danos em biomoléculas / Lipid hidroperoxides as singlet molecular oxygen precursors (O2 [1Δg]), detection and damage to biomoleculesJosé Pedro Friedmann Ângeli 21 July 2011 (has links)
O estudo do processo da peroxidação de lipídios tem aumentado nos últimos anos, principalmente devido à implicação dos hidroperóxidos de lipídios (LOOH) em diversos processos patológicos. A decomposição destes LOOH é capaz de gerar subprodutos capazes de promover danos em biomoléculas, incluindo proteínas e DNA. No presente trabalho, utilizando hidroperóxidos de ácido linoléico isotopicamente marcado com átomo de oxigênio-18 (LA18O18OH), fomos capazes de demonstrar que estas moléculas gerararam oxigênio singlete marcado [18(1O2)] em células em cultura. A detecção de tal espécie foi possível através da utilização de uma nova metodologia utilizando um derivado antracenico. Para este propósito foi utilizado o derivado de antraceno 3,3\'-(9,10-antracenodiil) bisacrilato (DADB), cujo produto especifico da reação com o 1O2 (o endoperóxido do DADB DADBO2) do pode ser facilmente detectado por HPLC-MS/MS. De forma a expandir a compreensão dos efeitos tóxicos desses LOOH, investigamos o efeito destes compostos gerados intracelularmente. Para tal, foi utilizado o Rosa bengala (RB), um fotosensibilizador que tem afinidade por espaços apolares como membranas e lisossomos. A fotosenssibilização deste composto foi capaz de induzir a morte celular, e esta morte estaria relacionada a uma maior formação de 1O2 e a um maior acumulo de peróxidos. Nestes estudos foi possível demonstrar que carotenóides e sistemas antioxidantes dependentes de glutationa foram capazes de proteger contra os efeitos tóxicos da fotosensibilização na presença de RB. Adicionalmente foram avaliados os efeitos da hemoglobina (Hb) e do hidroperóxido do ácido linoléico (LAOOH) em uma série de parâmetros toxicológicos, como citotoxicidade, estado redox, a peroxidação lipídica e dano ao DNA. Nós demonstramos que a pré-incubação das células com Hb e sua posterior exposição à LAOOH (Hb + LAOOH) levou a um aumento na morte celular, a oxidação do DCFH, formação de malonaldeído e fragmentação do DNA e que esses efeitos estavam relacionados com o grupo peróxido e ao heme presentes na Hb. Foi demonstrado que as células incubadas com LAOOH e Hb apresentaram um nível maior das lesões de DNA; 8-oxo-7,8-diidro-2 \'desoxiguanosina e 1,N2-etheno-2\'-desoxiguanosina. Além disso, as incubações com Hb levaram a um aumento nos níveis de ferro intracelular, e este alto nível de ferro correlacionada com a oxidação do DNA, avaliadas através da medida de sitios EndoIII e Fpg sensíveis. Nossos resultados comprovam que os LAOOHs apresentaram efeito citotóxico e genotóxico, mesmo em concentrações muito baixas, podendo contribuir para o desencadeamento de processos patologicos como o câncer e doenças cardiovasculares e neurodegenerativas. / The study of the process of lipid peroxidation has increased in recent years, mainly due to the involvement of lipid hydroperoxide (LOOH) in a series of pathological processes. The decomposition of LOOH is able to generate products that can promote damage to biomolecules, including proteins and DNA. In the present work, using linoleic acid hydroperoxide isotopically labeled with 18O2 (LA18O18OH), we demonstrate that these molecules were able to generate labeled singlet oxygen [18(1O2)] in cultured cells. The detection of such species was possible using a new methodology using an anthracene derivative .For this purpose we used the anthracene derivative of 3,3\'-(9,10-antracendiil) bisacrilate (DADB), whose specific reaction product with 1O2 (DADB endoperoxide DADBO2) can be easily detected by HPLC-MS/MS. In order to expand the understanding of the toxic effects of LOOH, we investigated the effect of these compounds generated intracellularly. For this porpoise, we used Rose Bengal (RB), a photosensitizer that has affinity for apolar spaces such as membranes and lysosomes. The photosensitization of this compound was able to induce cell death, and this death was related to increased formation of 1O2 and a higher accumulation of peroxides. In these studies we have shown that carotenoids and glutathione-dependent antioxidant systems were capable of protecting against the toxic effects of photosensitization in the presence of RB. Additionally, we evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxide (LAOOH) in a series of toxicological endpoints such as cytotoxicity, redox status, lipid peroxidation and DNA damage. We demonstrated that preincubation of cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, formation of malonaldehyde and DNA fragmentation, and that these effects were related to the peroxide and the heme group. It was demonstrated that cells incubated with LAOOH and Hb showed a higher level of the DNA lesions, 8-oxo-7,8-dihydro-2\'deoxyguanosine and 1,N2-etheno-2\'-deoxyguanosine. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlates with the oxidation of DNA, measured as EndoIII and Fpg-sensitive sites. Our results show that the LOOHs showed cytotoxic and genotoxic, even at very low concentrations and may contribute to the onset of chronic malignancies like cancer, cardiovascular and neurodegenerative diseases.
|
Page generated in 0.0562 seconds