• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13540
  • 3806
  • 1861
  • 1372
  • 747
  • 639
  • 444
  • 276
  • 276
  • 276
  • 276
  • 276
  • 266
  • 250
  • 209
  • Tagged with
  • 28668
  • 8210
  • 4200
  • 2742
  • 2571
  • 2464
  • 2355
  • 2324
  • 1920
  • 1907
  • 1736
  • 1516
  • 1359
  • 1282
  • 1248
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

A case study of the problems encountered upon assuming a high school principalship.

Martin, Edward W. 01 January 1937 (has links) (PDF)
No description available.
482

A study to investigate the academic records of students taking four major subjects in high school and those taking five major subjects.

Crosier, Carlton David 01 January 1965 (has links) (PDF)
No description available.
483

Junior high school administration and philosophy.

Hewitt, Kenneth G. 01 January 1959 (has links) (PDF)
No description available.
484

Exercise Recovery in High Altitude Deer Mice

Dessureault, Lauren January 2023 (has links)
Animals who live in the high-altitude environment are faced with the harsh conditions of low oxygen availability. This can make it difficult to perform daily tasks that require aerobic metabolism. However, deer mice (Peromyscus maniculatus) have evolved physiological adaptions that allow populations to survive in the high-altitude environment. One activity important for survival is aerobic locomotion and the rapid recovery of muscle metabolism after a bout of exercise. Hypoxia acclimated high-altitude mice have a greater reliance on carbohydrates to power exercise than low altitude mice and show a significant depletion of muscle glycogen. However, it is unclear how quickly after exercise is finished that these mice can replenish muscle glycogen stores. The gastrocnemius muscle of high-altitude deer mice has a more aerobic phenotype and a greater capacity to oxidize lipids than in low altitude mice. This suggests that high altitude mice may recover more quickly from exercise than their lowland counterparts due to a greater capacity to power glycogen replenishment through aerobic metabolism using the lipids stored in muscle as intramuscular triglycerides (IMTG). Using low- and high-altitude native deer mice born and raised in common lab conditions and acclimated to chronic hypoxia, I determined changes in oxygen consumption (VO2) following aerobic exercise and sampled skeletal muscle at various time points during recovery to examine changes in key metabolites, including glycogen and IMTG. I found there was depletion in glycogen stores during exercise in lowlanders and glycogen did return to resting levels following 90 minutes of recovery. In contrast, IMTG’s did not significantly change with exercise or during the recovery period in either population. These data suggest that muscle recovery from aerobic exercise may be influenced by altitude ancestry in deer mice. / Thesis / Master of Science (MSc)
485

Linking Enhanced Fatigue Life to Design by Modifying the Microstructure

Liu, Kaimiao 08 1900 (has links)
Structural material fatigue is a leading cause of failure and has motivated fatigue-resistant design to eliminate risks to human lives. Intrinsic microstructural features alter fatigue deformation mechanisms so profoundly that, essentially, fatigue properties of structural materials become deviant. With this in mind, we initiated this project to investigate the microstructural effect on fatigue behavior of potential structural high entropy alloys. With a better understanding of the effect of microstructure features on fatigue properties, the ultimate goal was to engineer the microstructure to enhance the fatigue life of structural materials. The effects of two major deformation mechanisms presented here are twinning-induced fatigue crack retardation, and transformation-induced fatigue crack retardation. The fundamental principle of both mechanisms is to delay the fatigue crack propagation rate by altering the work hardening ability locally within the crack plastic zone. In ultrafine grained triplex Al0.3CoCrFeNi, nano-sized deformation twins were observed during cyclic loading in FCC matrix due to low stacking fault energy (SFE). The work-hardening ability of the material near the crack was sustained with the formation of twins according to Considere's criteria. Further, due to the ultrafine-grained (UFG) nature of the material, fatigue runout stress was enhanced. In a coarse-grained, dual-phase high entropy alloy, persistent slip bands formed in FCC matrix during cyclic loading due mainly to the slight composition change that affects the SFE in the FCC matrix and eventually alters the deformation mechanism. Another way known to alter an alloy's work hardening (WH) ability is transformation-induced plasticity (TRIP). In some alloys, phase transformation happens due to strain localization, which alters the work-hardening ability. iii In a fine-grained, dual-phase metastable high entropy alloy, gamma (f.c.c.) to epsilon (h.c.p.) transformation occurred in the plastic zone that was induced from cracks. Thus, we designed a Cu-containing FeMnCoCrSi high entropy alloy that exhibited a normalized fatigue ratio of ~ 0.62 UTS (ultimate tensile strength). Our design approach was based on (a) engineering the gamma phase stability to attain sustained work hardening through delayed gamma (f.c.c.) to epsilon (h.c.p.) transformation to hinder fatigue crack propagation, (b) incorporating an ultrafine-grained microstructure to delay crack initiation, and (c) forming deformation twins to reduce the crack propagation rate. We verified that a UFG gamma dominant microstructure could provide opportunities for exceptional fatigue resistance, as sustained WH activity strengthened the material locally in the crack plastic zone, thereby validating our expectation that the combination of UFG and TRIP is a path to design the next generation of fatigue-resistant alloys.
486

A study of the most frequently-met value conflicts of pupils in a suburban junior high school, their perception of their parents' values and the effects of group discussion on pupils' values

Arone, Vincent J. January 1963 (has links)
Thesis (Ed.D.)—Boston University
487

A Study of Absences in the Small High School

Rich, Glenn A. January 1939 (has links)
No description available.
488

A Study of Absences in the Small High School

Rich, Glenn A. January 1939 (has links)
No description available.
489

Homogenous and Carbon Graded High Manganese Steels

Ghasri Khouzani, Morteza January 2015 (has links)
High manganese steels offer an outstanding combination of high strength and ductility owing to their high sustained strain hardening rates. The strain-induced deformation products in these steels (mechanical twins and ε-martensite) increase the work hardening rates by acting as barriers for dislocation motion. A significant determinant of the deformation products in these steels is the value of stacking fault energy (SFE), which is in turn strongly dependent on the alloy manganese and carbon contents. The main objective of present work is to investigate the microstructural evolution and mechanical behaviour of both homogenous and compositionally graded high-Mn steels, where C compositional gradients were introduced into the latter. The starting materials in this work were cold rolled Fe-22Mn-0.6C and Fe-30Mn-0.6C steels. For both starting alloys, decarburization and annealing heat-treatments were used to obtain four homogenous alloys with carbon contents of approximately 0, 0.2, 0.4 and 0.6 wt. % with similar grain sizes. Decarburization heat treatments were also applied to obtain three carbon graded Fe-22Mn-C alloys (G1, G2, G3) and one carbon graded Fe-30Mn-C alloy. Microstructural observations determined the deformation products to be mechanical ε-martensite for the 22Mn-0C and 22Mn-0.2C alloys and mechanical twins for the 22Mn-0.6C, 30Mn-0.2C, 30Mn-0.4C and 30Mn-0.6C alloys. For the 22Mn-0.4C and 30Mn-0C alloys, both mechanical twins and ε-martensite were observed during deformation. For all the carbon graded Fe-22Mn-C alloys, the dominant deformation products changed from mechanical ε-martensite at the near-surface layer to a mixture of mechanical twins and ε-martensite or mechanical twins only at the inner cross-section layers. In the case of carbon graded Fe-30Mn-C alloy, the deformation products altered from a combination of mechanical ε-martensite and twins at the near-surface layer to mechanical twins at the inner cross-section layers. For all the homogenous alloys, the ultimate tensile strength and uniform elongation increased with increasing alloy carbon content. The work hardening behaviour of these steels was successfully modelled using a modified Kocks-Mecking model, in which the work hardening was the sum of the dislocation glide contribution and the phase transition contribution – mechanical twinning and/or mechanical ε-martensite formation – as dictated by the formation kinetics of both deformation products. For both alloy systems, the mechanical properties of the carbon graded alloys were not as good as the monolithic 22Mn-0.6C and 30Mn-0.6C alloys due to their lower sustained high work hardening rates. Both the mechanical ε-martensite and twin formation were found to follow a sigmoidal kinetic with strain. In the case of twin formation homogenous alloys, the saturated volume fraction of twins was directly proportional to the alloy SFE. For the ε-martensite formation homogenous alloys, the ε-martensite volume fraction at fracture was found to be strongly dependent on alloy SFE, where it declined sigmoidally with increasing alloy SFE. It was also found that the ε-martensite volume fraction at fracture – approximately 0.7 – was independent of SFE for SFE  6 mJ/m2. This indicated that the critical damage mechanism was determined by the kinetics of the ε-martensite formation, which was in turn dictated by the alloy SFE. Finally, it was found that the stress for the onset of mechanical twinning – and consequent increase in the work hardening rate – for the higher SFE, twinning dominated alloys was linearly proportional to the alloy SFE. / Thesis / Doctor of Philosophy (PhD)
490

The incidence and consistency of personal-social problems of junior high school pupils by grade, sex, and intelligence levels

Connor, John J., Jr. January 1962 (has links)
Thesis (Ed.D.)--Boston University.

Page generated in 0.0741 seconds