• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-pressure studies on molecular systems at ambient and low temperatures

Cameron, Christopher Alistair January 2015 (has links)
Pressure and temperature are two environmental variables that are increasingly being exploited by solid-state researchers probing structure-property relationships in the crystalline state. Modern high-pressure apparatus is capable of generating many billions of Pascals in the laboratory, and therefore can produce significantly greater alterations to crystalline materials than changes in temperature, which can typically be varied by only a few thousand Kelvin. Many systems such as single-molecule magnets exhibit interesting properties under low-temperature regimes that can be substantially altered with pressure. The desire by investigators to perform analogous single-crystal X-ray diffraction studies has driven the development of new high-pressure apparatus and techniques designed to accommodate low-temperature environments. [Ni(en)3][NO3]2 undergoes a displacive phase transition from P6322 at ambient pressure to a lower symmetry P6122/P6522 structure between 0.82 and 0.87 GPa, which is characterized by a tripling of the unit cell c axis and the number of molecules per unit cell. The same transition has been previously observed at 108 K. The application of pressure leads to a general shortening of O···H hydrogen bonding interactions in the structure, with the greatest contraction (24%) occurring diagonally between stacks of Ni cation moieties and nitrate anions. A novel Turnbuckle Diamond Anvil Cell designed for high-pressure low-temperature single-crystal X-ray experiments on an open-flow cryostat has been calibrated using the previously reported phase transitions of five compounds: NH4H2PO4 (148 K), ferrocene (164 K), barbituric acid dihydrate (216 K), ammonium bromide (235 K), and potassium nitrite (264 K). From the observed thermal differentials between the reported and observed transition temperatures a linear calibration curve has been constructed that is applicable between ambient-temperature and 148 K. Low-temperature measurements using a thermocouple have been shown to vary significantly depending on the experimental setup for the insertion wire, whilst also adding undesirable thermal energy into the sample chamber which was largely independent of attachment configuration. High-pressure low-temperature single-crystal X-ray diffraction data of [Mn12O12(O2CMe)16(H2O)4] (known as Mn12OAc) reveals a pressure-induced expulsion of the crystallized acetic acid from the crystal structure and resolution of the Jahn-Teller axes disorder between ambient pressure and 0.87 GPa. These structural changes have been correlated with high-pressure magnetic data indicating the elimination of a slow-relaxing isomer over this pressure range. Further application of pressure to 2.02 GPa leads to the expansion of these Jahn-Teller axes, resulting in an enhancement of the slow-relaxing magnetic anisotropy as observed in the literature. Relaxation of pressure leads to a resolvation of the crystal structure and re-disordering of the Jahn-Teller axes, demonstrating that this structural-magnetic phenomenon is fully reversible with respect to pressure. The space group of the Prussian blue analogue Mn3[Cr(CN)6].15H2O has been re-evaluated as R-3m between ambient pressure and 2.07 GPa using high-pressure single-crystal X-ray and high-pressure neutron powder data. Reductions in metal-metal distances and gradual distortions of the Mn octahedral geometry have been correlated with previously reported increases in Tc and declines in ferrimagnetic moment in the same pressure range. Increasing the applied pressure to 2.97 GPa leads to partial amorphization and results in a loss of long-range magnetic order as shown by the literature. The application of pressure (1.8 GPa) to the structure of K2[Pt(CN)4]Br0.24.3.24H2O (KCP(Br)) causes a reduction in the Pt intra-chain and inter-chain distances, and results in an enhancement of the overall conductivity under these conditions as demonstrated in the literature. Almost no changes occur to the high-pressure crystal structure upon cooling to 4 K, except in the Pt-Pt intra-chain distances which converge and suppress the Peierls distortion known to occur at 4 K, resulting in a comparatively greater electrical conductivity under these conditions.
2

Dynamic acclimation of Arabidopsis thaliana to the environment

Miller, Matthew January 2015 (has links)
Acclimation of photosynthesis allows plants to adjust the composition of their photosynthetic apparatus to adapt to changes in the environment, and is important in maintaining fitness. Dynamic acclimation refers to acclimation of fully developed leaves, after developmental processes have ceased. Rates of photosynthesis fluctuate with environmental change, and this requires metabolic adjustments. It has previously been shown that acclimation requires the chloroplastic glucose 6-phosphate/ phosphate translocator GPT2. Using label-free proteomics we characterised the acclimation deficient gpt2 mutant. High light acclimation involves changes in the composition of the photosynthetic proteome and increases in many other metabolic enzymes, but in gpt2 plants, a reduced ability to alter protein composition, and enhanced stress responses were seen. Using a combined transcriptomics and proteomics approach we also analysed acclimation to low temperature. We show that photosynthetic acclimation requires the cytosolic fumarase, FUM2. In fum2 mutants, an enhanced transcriptional response to low temperature was seen, which was impaired at the level of the proteome, relative to the WT. We also identified a protein encoding a β-Amylase, BAM5, that strongly responded to high light acclimation. The role of this protein was further characterised, and we show a nonchloroplastic location. Furthermore, suppression of this gene resulted in plants that were unable to acclimate, and had a reduced sugar content. This research highlights novel and diverse roles for proteins in acclimation, and provides a comprehensive proteomic profiling of high light and low temperature acclimation that has previously been lacking.
3

Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka

Ngeleka, Tholakele Prisca January 2005 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350ºC and 200ºC, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with CO2 and traces of CH4, CO, and saturated H2O. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
4

Sulphur dioxide capture under fluidized bed combustion conditions / Tholakele Prisca Ngeleka

Ngeleka, Tholakele Prisca January 2005 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350ºC and 200ºC, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with CO2 and traces of CH4, CO, and saturated H2O. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Chemical Engineering))--North-West University, Potchefstroom Campus, 2006.
5

An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka

Ngeleka, Tholakele Prisca January 2008 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350°C and 200°C, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with C02 and traces of CH4, CO, and saturated H20. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
6

An investigation into the feasibility of applying the watergas shift process to increase hydrogen production rate of the hybrid sulphur process / T.P. Ngeleka

Ngeleka, Tholakele Prisca January 2008 (has links)
An investigation was undertaken to determine the feasibility of increasing the hydrogen production rate by coupling the water gas shift (WGS) process to the hybrid sulphur process (HyS). This investigation also involved the technical and economical analysis of the water gas shift and the H2 separation by means of Pressure swing adsorption (PSA) process. A technical analysis of the water gas shift reaction was determined under the operating conditions selected on the basis of some information available in the literature. The high temperature system (HTS) and low temperature system (LTS) reactors were assumed to be operated at temperatures of 350°C and 200°C, respectively. The operating pressure for both reactors was assumed to be 30 atmospheres. The H2 production rate of the partial oxidation (POX) and the WGS processes was 242T/D, which is approximately two times the amount produced by the HyS process alone. The PSA was used for the purification process leading to a hydrogen product with a purity of 99.99%. From the total H2 produced by the POX and the WGS processes only 90 percent of H2 is recovered in the PSA. The unrecovered H2 leaves the PSA as a purge gas together with C02 and traces of CH4, CO, and saturated H20. The estimated capital cost of the WGS plant with PSA is about US$50 million. The production cost is highly dependent on the cost of all of the required raw materials and utilities involved. The production cost obtained was US $1.41/kg H2 based on the input cost of synthesis gas as produced by the POX process. In this case the production cost of synthesis gas based on US $6/GJ for natural gas and US $0/Ton for oxygen was estimated to be US $0.154/kg. By increasing the oxygen and natural gas cost, the corresponding increase in synthesis gas has resulted in an increase in H2 production cost of US $1.84/kg. / Thesis (M.Sc. (Nuclear Engineering))--North-West University, Potchefstroom Campus, 2009.
7

STUDY OF VIBRATIONAL PROPERTIES OF THYMIDINE CRYSTAL IN EXTREME CONDITIONS OF PRESSURE AND TEMPERATURE. / ESTUDO DAS PROPRIEDADES VIBRACIONAIS DO CRISTAL DE TIMIDINA EM CONDIÃÃES EXTREMAS DE PRESSÃO E TEMPERATURA.

Felipe Moreira Barboza 20 February 2017 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / The unit of sugar and base connected by a N-β-glycosyl linkage is named a nucleoside. In the present work the nucleoside thymidine, whose molecular formula is C10N2O5H14, was studied by Raman spectroscopy, subjecting it extreme conditions of pressure and temperature, as well as X ray diffraction measurements. An auxiliary analysis of normal crystal vibration modes was performed using first principles calculations using the B3LYP functional together with the Gaussian bases 6-31G+(d) and potential energy distribution analysis (PED). These results, together with literature data and Raman spectroscopy measurements in several thymidine scattering geometries, allowed the identification of the various normal modes of crystal vibration. X-ray diffraction experiments were performed in the temperature range between 83 and 413 K. Experiments of Raman spectroscopy under extreme temperature conditions (20 to 380 K) were performed in the spectral range of 20 to 3400 cm-1. From the analysis of the results, it is possible to draw some conclusions. (i) The thymidine crystal remained stable throughout the investigated temperature range, indicating that the temperature effect is not sufficient to modify the hydrogen bonds present between the molecules in such a way as to modify the symmetry of the crystal. (ii) The material studied showed some slight changes in the vibrational spectra in the experiment performed at low temperatures, suggesting, if not a structural phase transition, at least some conformational modification of the thymidine molecules. Raman spectra of thymidine crystal were obtained for pressures up to 5.0 GPa in a diamond anvil cell. The results show the presence of anomaly in the Raman spectrum at pressures close to 3.0 GPa. This anomaly is characterized by disappearance of lattice modes, appearance of some internal modes, splitting of high wavenumbers modes, downshift of modes associated with hydrogen bonds, changes in the intensity of internal modes and discontinuities of the slopes of the wavenumbers versus pressure for several Raman modes. This set of modifications was interpreted as consequence of a phase transition undergone by thymidine close to 3.0 GPa. Further, decompression to atmospheric pressure generates the original Raman spectrum, showing that the pressure-induced phase transition undergone by thymidine crystals is reversible. A comparison with results on other nucleosides submitted to high pressure is also furnished. / Quando a pentose (glicose) e uma base nitrogenada unem-se por meio de uma ligaÃÃo N-β glicosÃdica forma-se uma molÃcula denominada de nucleosÃdeo. No presente trabalho o nucleosÃdeo timidina, cuja fÃrmula molecular à C10N2O5H14, foi estudado atravÃs de espectroscopia Raman, submetendo-o a condiÃÃes extremas de pressÃo e de temperatura, alÃm de medidas de difraÃÃo de raios X. Uma anÃlise auxiliar a respeito dos modos normais de vibraÃÃo do cristal foi realizada atravÃs de cÃlculos de primeiros princÃpios utilizando-se o funcional B3LYP em conjunto com as bases gaussianas 6-31G+(d) e anÃlise de distribuiÃÃo de energia potencial (PED). Esses resultados, juntamente com dados da literatura e medidas de espectrocopia Raman em diversas geometrias de esplalhamento na timidina permitiram uma identificaÃÃo dos vÃrios modos normais de vibraÃÃo do cristal. Os experimentos por difraÃÃo de raios X foram realizados no intervalo de temperatura entre 83 e 413 K. Experimentos de espectroscopia Raman sob condiÃÃes extremas de temperatura (20 a 380 K) foram realizados no intervalo espectral compreendido entre 20 e 3400 cm-1. Da anÃlise dos resultados, à possÃvel tirar algumas conclusÃes. (i) O cristal de timidina manteve-se estÃvel em todo o intervalo de temperatura investigado, indicando que o efeito de temperatura nÃo à suficiente para modificar as ligaÃÃes de hidrogÃnio presentes entre as molÃculas de tal forma que haja modificaÃÃo da simetria do cristal. (ii) O material estudado apresentou algumas leves mudanÃas nos espectros vibracionais no experimento realizado a baixas temperaturas, sugerindo, se nÃo uma transiÃÃo de fase estrutural, pelo menos alguma modificaÃÃo conformacional das molÃculas da timidina. Experimentos submetendo o cristal a pressÃes de atà 5 GPa foram realizados utilizando-se uma cÃlula de pressÃo a extremos de diamantes. Os resultados mostraram anomalias nos espectros Raman por volta de 3.0 GPa. Essas anomalias foram caracterizadas pelo desaparecimento de alguns modos de rede, surgimento de alguns modos internos, deslocamento para menores nÃmeros de onda de modos associados a ligaÃÃes de hidrogÃnio e descontinuidades dos coeficientes lineares de vÃrios modos nos grÃficos de nÃmero de onda em funÃÃo da pressÃo. Essa sÃrie de modificaÃÃes foram interpretadas como consequÃncia de uma transiÃÃo de fase sofrida pela timidina por volta de 3.0 GPa. AlÃm disso, a descompressÃo da amostra atà a pressÃo atmosfÃrica mostrou que a transiÃÃo de fase à reversÃvel. TambÃm fornecemos uma comparaÃÃo com resultados de outros nucleosÃdeos submetidos a altas pressÃes.
8

Structural and metamorphic evolution of the Lycian Nappes and the Menderes Massif (southwest Turkey) : geodynamic implications and correlations with the Aegean domain

Rimmelé, Gaëtan January 2003 (has links)
West Anatolien, welches die östliche laterale Verlängerung der ägäischen Domäne darstellt, besteht aus mehreren tektono-metamorphen Einheiten, die Hochdruck/Niedrigtemperatur (HP/LT) Gesteine aufweisen. Einige dieser metamorphen Gesteine Zeugen der panafrikanischen oder der kimmerischen Orogenese sind, entstanden andere während die jüngere Alpine Orogenese. <br /> <br /> Das Menderes Massiv, in der SW Türkei, wird im N von Decken der Izmir-Ankara Suturzone, im E von der Afyon Zone sowie im S von den Lykischen Decken tektonisch überlagert. In den Metasedimenten der Lykischen Decken und dem darunterliegenden Menderes Massiv treten weitverbreitete Vorkommen von Fe-Mg-Carpholith-führenden Gesteinen auf. Diese neue Entdeckung belegt, dass beide Deckenkomplexe während der alpinen Orogenese unter HP/LT Bedingungen überprägt wurden. Die P-T Bedingungen für die HP-Phase liegen bei 10-12 kbar/400&#176;C in den Lykischen Decken und 12-14 kbar/470-500&#176;C im südlichen Menderes Massiv, was eine Versenkung von min. 30 km während der Subduktion und Deckenstapelung dokumentiert.<br /> <br /> Die Analyse der duktilen Deformation sowie thermobarometrische Berechnungen zeigen, dass die Lykischen Metasedimente unterschiedliche Exhumierungspfade nach der gemeinsamen HP-Phase durchliefen. In Gesteinen, die weiter entfernt vom Kontakt der Lykischen Decken mit dem Menderes Massiv liegen, lässt sich lediglich ein Hochdruck-Abkühlungspfad belegen, der mit einer &bdquo;top-NNE&ldquo; Bewegung an die Akçakaya Scherzone gebunden ist. Diese Scherzone ist ein Intra-Deckenkontakt, der in den frühen Stadien, innerhalb des Stabilitätsfeldes von Fe-Mg-Carpholith, der Exhumierung aktiv war. Die nahe am Kontakt mit dem Menderes Massiv gelegenen Gesteine weisen wärmere Exhumierungspfade auf, die mit einer &bdquo;top-E&ldquo; Scherung assoziiert sind. Diese Deformation erfolgte nach dem S-Transport der Lykischen Decken und somit zeitgleich mit der Reaktivierung des Kontakts der Lykischen Decken/Menderes Massiv als Hauptscherzone (der Gerit Scherzone), die eine späte Exhumierung der HP-Gesteine unter wärmeren Bedingungen erlaubte. Die Hochdruckgesteine des südlichen Menderes Massiv weisen eine einfache isothermale Dekompression bei etwa 450&#176;C während der Exhumierung nach. Die begleitende Deformation während der Hochdruckphase und der Exhumierung ist durch eine starke N-S bis NE-SW&ndash;Dehnung charakterisiert.<br /> <br /> Das Alter der Hochdruckmetamorphose in den Lykischen Decken kann zwischen oberster Kreide (jüngste Sedimente in der Lykischen allochthonen Einheit) und Eozän (Kykladische Blauschiefer) festgelegt werden. Ein mögliches Paläozänes Alter kann somit angenommen werden. Das Alter der Hochdruckmetamorphose in den Deckschichten des Menderes Massiv liegt demnach zwischen mittlerem Paläozän (oberste Metaolistostrome der Menderes &bdquo;Cover&ldquo;-Einheit) und dem mittleren Eozän (HP-Metamorphose in der Dilek-Selçuk Region des Kykladenkomplex). Apatit-Spaltspur-Daten von beiden Seiten des Kontakts der Lykischen Decken/Menderes Massiv lassen darauf schließen, daß diese Gesteine im späten Oligozän/frühen Miozän sehr nahe der Paläo-Oberfläche waren. <br /> <br /> Die hier dargestellten Arbeiten in den Lykischen Decken und im Menderes Massiv lassen auf die Existenz eines ausgedehnten alpinen HP-Metamorphose-Gürtels im SW der Türkei schließen. Die Hochdruckgesteine wurden im Akkretionskomplex einer N-wärtigen Subduktion des Neo-Tethys Ozeans gebildet, der spät-Kretazisch obduziert und dann in die früh-Tertiäre Kontinentalkollision des passiven Randes (Anatolid-Taurid Block) mit der nördlichen Platte (Sakarya Mikrokontinent) miteinbezogen war. Im Eozän bestand der Akkretionskomplex aus drei gestapelten Hochdruckeinheiten. Die Unterste entspricht dem eingeschuppten Kern und Hochdruck-&bdquo;Cover&ldquo; des Menderes Massivs. Die Mittlere besteht aus dem Kykladischen Blauschiefer-Komplex (Dilek-Selçuk Einheit) und die oberste Einheit wird von den Hochdruck Lykischen Decken gebildet. <br /> <br /> Während die Basiseinheiten der ägäischen und anatolischen Region tektonisch unterschiedliche Prä-mesozoische Geschichten durchliefen, wurden sie wahrscheinlich am Ende des Paläozikums zusammengeführt und durchliefen dann ein gemeinsame mesozoische Geschichte. Dann wurden die Basis und ihre Deckschichten, ebenso wie die Kykladischen Blauschiefer und Lykischen Decken, in ähnlich entstandene akkretionäre Komplexe während des Eozäns und Oligozäns involviert. / Western Anatolia that represents the eastward lateral continuation of the Aegean domain is composed of several tectono-metamorphic units showing occurrences of high-pressure/low-temperature (HP-LT) rocks. While some of these metamorphic rocks are vestiges of the Pan-African or Cimmerian orogenies, others are the result of the more recent Alpine orogenesis. <br /> <br /> In southwest Turkey, the Menderes Massif occupies an extensive area tectonically overlain by nappe units of the Izmir-Ankara Suture Zone in the north, the Afyon Zone in the east, and the Lycian Nappes in the south. In the present study, investigations in the metasediments of the Lycian Nappes and underlying southern Menderes Massif revealed widespread occurrences of Fe-Mg-carpholite-bearing rocks. This discovery leads to the very first consideration that both nappe complexes recorded HP-LT metamorphic conditions during the Alpine orogenesis. P-T conditions for the HP metamorphic peak are about 10-12 kbar/400&#176;C in the Lycian Nappes, and 12-14 kbar/470-500&#176;C in the southern Menderes Massif, documenting a burial of at least 30 km during subduction and nappe stacking. <br /> <br /> Ductile deformation analysis in concert with multi-equilibrium thermobarometric calculations reveals that metasediments from the Lycian Nappes recorded distinct exhumation patterns after a common HP metamorphic peak. The rocks located far from the contact separating the Lycian Nappes and the Menderes Massif, where HP parageneses are well preserved, retained a single HP cooling path associated with top-to-the-NNE shearing related to the Akçakaya shear zone. This zone of strain localization is an intra-nappe contact that was active in the early stages of exhumation of HP rocks, within the stability field of Fe-Mg-carpholite. The rocks located close to the contact with the Menderes Massif, where HP parageneses are completely retrogressed into chlorite and mica, recorded warmer exhumation paths associated with top-to-the-E intense shearing. This deformation occurred after the southward emplacement of Lycian Nappes, and is contemporaneous with the reactivation of the &rsquo;Lycian Nappes-Menderes Massif&prime; contact as a major shear zone (the Gerit shear zone) that allowed late exhumation of HP parageneses under warmer conditions. The HP rocks from the southern Menderes Massif recorded a simple isothermal decompression at about 450&#176;C during exhumation, and deformation during HP event and its exhumation is characterized by a severe N-S to NE-SW stretching.<br /> <br /> The age of the HP metamorphism recorded in the Lycian Nappes is assumed to range between the Latest Cretaceous (age of the youngest sediments in the Lycian allochthonous unit) and the Eocene (age of the Cycladic Blueschists). A probable Palaeocene age is suggested. The age of the HP metamorphism that affected the cover series of the Menderes Massif is constrained between the Middle Palaeocene (age of the uppermost metaolistostrome of the Menderes &rsquo;cover&prime;) and the Middle Eocene (age of the HP metamorphism in the Dilek-Selçuk region that belongs to the Cycladic Complex). Apatite fission track data for the rocks on both sides of the &rsquo;Lycian Nappes/Menderes Massif&rsquo; contact suggest that these rocks were very close to the paleo-Earth surface in the Late Oligocene-Early Miocene time.<br /> <br /> This study in the Lycian Nappes and in the Menderes Massif establishes the existence of an extensive Alpine HP metamorphic belt in southwest Turkey. HP rocks were involved in the accretionary complex related to northward-verging subduction of the Neo-Tethys Ocean, Late Cretaceous obduction and subsequent Early Tertiary continental collision of the passive margin (Anatolide-Tauride block) beneath the active margin of the northern plate (Sakarya micro-continent). During the Eocene, the accretionary complex was made of three stacked HP units. The lowermost corresponds to the imbricated &rsquo;core&prime; and HP &rsquo;cover&prime; of the Menderes Massif, the intermediate one consists of the Cycladic Blueschist Complex (Dilek-Selçuk unit), and the uppermost unit is made of the HP Lycian Nappes.<br /> <br /> Whereas the basement units of both Aegean and Anatolian regions underwent a different pre-Mesozoic tectonic history, they were probably juxtaposed by the end of the Paleozoic and underwent a common Mesozoic history. Then, the basements and their cover, as well as the Cycladic Blueschists and the Lycian Nappes were involved in similar evolutional accretionary complexes during the Eocene and Oligocene times.
9

Estudo das propriedades vibracionais do cristal de timidina em condições extremas de pressão e temperatura / Study of vibrational properties of thymidine crystal in extreme conditions of pressure and temperature

Barboza, Felipe Moreira January 2017 (has links)
BARBOZA, F. M. Estudo das propriedades vibracionais do cristal de timidina em condições extremas de pressão e temperatura. 2017. 187 f. Tese (Doutorado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-17T18:08:44Z No. of bitstreams: 1 2017_tese_fmbarboza.pdf: 14915098 bytes, checksum: 92c70871f92588cea1807a2552402d46 (MD5) / Approved for entry into archive by Giordana Silva (giordana.nascimento@gmail.com) on 2017-04-17T18:09:44Z (GMT) No. of bitstreams: 1 2017_tese_fmbarboza.pdf: 14915098 bytes, checksum: 92c70871f92588cea1807a2552402d46 (MD5) / Made available in DSpace on 2017-04-17T18:09:44Z (GMT). No. of bitstreams: 1 2017_tese_fmbarboza.pdf: 14915098 bytes, checksum: 92c70871f92588cea1807a2552402d46 (MD5) Previous issue date: 2017 / The unit of sugar and base connected by a N-β-glycosyl linkage is named a nucleoside. In the present work the nucleoside thymidine, whose molecular formula is C10N2O5H14, was studied by Raman spectroscopy, subjecting it extreme conditions of pressure and temperature, as well as X ray diffraction measurements. An auxiliary analysis of normal crystal vibration modes was performed using first principles calculations using the B3LYP functional together with the Gaussian bases 6-31G+(d) and potential energy distribution analysis (PED). These results, together with literature data and Raman spectroscopy measurements in several thymidine scattering geometries, allowed the identification of the various normal modes of crystal vibration. X-ray diffraction experiments were performed in the temperature range between 83 and 413 K. Experiments of Raman spectroscopy under extreme temperature conditions (20 to 380 K) were performed in the spectral range of 20 to 3400 cm-1. From the analysis of the results, it is possible to draw some conclusions. (i) The thymidine crystal remained stable throughout the investigated temperature range, indicating that the temperature effect is not sufficient to modify the hydrogen bonds present between the molecules in such a way as to modify the symmetry of the crystal. (ii) The material studied showed some slight changes in the vibrational spectra in the experiment performed at low temperatures, suggesting, if not a structural phase transition, at least some conformational modification of the thymidine molecules. Raman spectra of thymidine crystal were obtained for pressures up to 5.0 GPa in a diamond anvil cell. The results show the presence of anomaly in the Raman spectrum at pressures close to 3.0 GPa. This anomaly is characterized by disappearance of lattice modes, appearance of some internal modes, splitting of high wavenumbers modes, downshift of modes associated with hydrogen bonds, changes in the intensity of internal modes and discontinuities of the slopes of the wavenumbers versus pressure for several Raman modes. This set of modifications was interpreted as consequence of a phase transition undergone by thymidine close to 3.0 GPa. Further, decompression to atmospheric pressure generates the original Raman spectrum, showing that the pressure-induced phase transition undergone by thymidine crystals is reversible. A comparison with results on other nucleosides submitted to high pressure is also furnished. / Quando a pentose (glicose) e uma base nitrogenada unem-se por meio de uma ligação N-β glicosídica forma-se uma molécula denominada de nucleosídeo. No presente trabalho o nucleosídeo timidina, cuja fórmula molecular é C10N2O5H14, foi estudado através de espectroscopia Raman, submetendo-o a condições extremas de pressão e de temperatura, além de medidas de difração de raios X. Uma análise auxiliar a respeito dos modos normais de vibração do cristal foi realizada através de cálculos de primeiros princípios utilizando-se o funcional B3LYP em conjunto com as bases gaussianas 6-31G+(d) e análise de distribuição de energia potencial (PED). Esses resultados, juntamente com dados da literatura e medidas de espectrocopia Raman em diversas geometrias de esplalhamento na timidina permitiram uma identificação dos vários modos normais de vibração do cristal. Os experimentos por difração de raios X foram realizados no intervalo de temperatura entre 83 e 413 K. Experimentos de espectroscopia Raman sob condições extremas de temperatura (20 a 380 K) foram realizados no intervalo espectral compreendido entre 20 e 3400 cm-1. Da análise dos resultados, é possível tirar algumas conclusões. (i) O cristal de timidina manteve-se estável em todo o intervalo de temperatura investigado, indicando que o efeito de temperatura não é suficiente para modificar as ligações de hidrogênio presentes entre as moléculas de tal forma que haja modificação da simetria do cristal. (ii) O material estudado apresentou algumas leves mudanças nos espectros vibracionais no experimento realizado a baixas temperaturas, sugerindo, se não uma transição de fase estrutural, pelo menos alguma modificação conformacional das moléculas da timidina. Experimentos submetendo o cristal a pressões de até 5 GPa foram realizados utilizando-se uma célula de pressão a extremos de diamantes. Os resultados mostraram anomalias nos espectros Raman por volta de 3.0 GPa. Essas anomalias foram caracterizadas pelo desaparecimento de alguns modos de rede, surgimento de alguns modos internos, deslocamento para menores números de onda de modos associados a ligações de hidrogênio e descontinuidades dos coeficientes lineares de vários modos nos gráficos de número de onda em função da pressão. Essa série de modificações foram interpretadas como consequência de uma transição de fase sofrida pela timidina por volta de 3.0 GPa. Além disso, a descompressão da amostra até a pressão atmosférica mostrou que a transição de fase é reversível. Também fornecemos uma comparação com resultados de outros nucleosídeos submetidos a altas pressões.

Page generated in 0.1139 seconds