1 |
Fast Adaptive Numerical Methods for High Frequency Waves and Interface TrackingPopovic, Jelena January 2012 (has links)
The main focus of this thesis is on fast numerical methods, where adaptivity is an important mechanism to lowering the methods' complexity. The application of the methods are in the areas of wireless communication, antenna design, radar signature computation, noise prediction, medical ultrasonography, crystal growth, flame propagation, wave propagation, seismology, geometrical optics and image processing. We first consider high frequency wave propagation problems with a variable speed function in one dimension, modeled by the Helmholtz equation. One significant difficulty of standard numerical methods for such problems is that the wave length is very short compared to the computational domain and many discretization points are needed to resolve the solution. The computational cost, thus grows algebraically with the frequency w. For scattering problems with impenetrable scatterer in homogeneous media, new methods have recently been derived with a provably lower cost in terms of w. In this thesis, we suggest and analyze a fast numerical method for the one dimensional Helmholtz equation with variable speed function (variable media) that is based on wave-splitting. The Helmholtz equation is split into two one-way wave equations which are then solved iteratively for a given tolerance. We show rigorously that the algorithm is convergent, and that the computational cost depends only weakly on the frequency for fixed accuracy. We next consider interface tracking problems where the interface moves by a velocity field that does not depend on the interface itself. We derive fast adaptive numerical methods for such problems. Adaptivity makes methods robust in the sense that they can handle a large class of problems, including problems with expanding interface and problems where the interface has corners. They are based on a multiresolution representation of the interface, i.e. the interface is represented hierarchically by wavelet vectors corresponding to increasingly detailed meshes. The complexity of standard numerical methods for interface tracking, where the interface is described by marker points, is O(N/dt), where N is the number of marker points on the interface and dt is the time step. The methods that we develop in this thesis have O(dt^(-1)log N) computational cost for the same order of accuracy in dt. In the adaptive version, the cost is O(tol^(-1/p)log N), where tol is some given tolerance and p is the order of the numerical method for ordinary differential equations that is used for time advection of the interface. Finally, we consider time-dependent Hamilton-Jacobi equations with convex Hamiltonians. We suggest a numerical method that is computationally efficient and accurate. It is based on a reformulation of the equation as a front tracking problem, which is solved with the fast interface tracking methods together with a post-processing step. The complexity of standard numerical methods for such problems is O(dt^(-(d+1))) in d dimensions, where dt is the time step. The complexity of our method is reduced to O(dt^(-d)|log dt|) or even to O(dt^(-d)). / <p>QC 20121116</p>
|
2 |
Méthodes d’analyse et de modélisation pertinentes pour la propagation des ondes à l’échelle méso dans des milieux hétérogènes / Relevant numerical methods for meso-scale wave propagation in heterogeneous mediaXu, Wen 17 July 2018 (has links)
Les travaux de la présente thèse portent sur l’estimation d'erreur a posteriori pour les solutions numériques par éléments finis de l'équation des ondes élastiques dans les milieux hétérogènes. Deux types d’estimation ont été développés. Le premier considère directement l’équation élastodynamique et conduit à un nouvel estimateur d'erreur a posteriori explicite en norme L∞ en temps. Les principales caractéristiques de cet estimateur explicite sont l'utilisation de la méthode de résidus et le développement de reconstructions en temps et en espace selon les différentes régularités exigées par les différents termes contribuant à l’obtention d’une borne supérieure. L’analyse numérique de cet estimateur dans le cas des maillages uniformes montre qu’il assure bien une borne supérieure mais avec une propriété asymptotique qui reste à améliorer. Le deuxième type d’estimateur d’erreur est développé dans le contexte de la propagation des ondes à haute fréquence dans des milieux hétérogènes à l’échelle mésoscopique. Il s’agit d’une nouvelle erreur en résidus basée sur l'équation de transfert radiatif, qui est obtenue par un développement asymptotique multi-échelle de l'équation d'onde en utilisant la transformation de Wigner en espace-temps. Les résidus sont exprimés en termes de densités énergétiques calculés dans l’espace des phases pour les solutions d’onde numériques transitoires par éléments finis. L’analyse numérique de cette erreur appliquée aux milieux homogènes et hétérogènes en 1D a permis de valider notre approche. Les champs d’application visés sont la propagation des ondes sismiques dans les milieux géophysiques ou la propagation des ondes ultrasonores dans les milieux polycristallins. / This thesis work deals with a posteriori error estimates for finite element solutions of the elastic wave equation in heterogeneous media. Two different a posteriori estimation approaches are developed. The first one, in a classical way, considers directly the elastodynamic equation and results in a new explicit error estimator in a non-natural L∞ norm in time. Its key features are the use of the residual method and the development of space and time reconstructions with respect to regularities required by different residual operators contributing to the proposed error bound. Numerical applications of the error bound with different mesh sizes show that it gives rise to a fully computable upper bound. However, its effectivity index and its asymptotic accuracy remain to be improved. The second error estimator is derived for high frequency wave propagation problem in heterogeneous media in the weak coupling regime. It is a new residual-type error based on the radiative transfer equation, which is derived by a multi-scale asymptotic expansion of the wave equation in terms of the spatio-temporal Wigner transforms of wave fields. The residual errors are in terms of angularly resolved energy quantities of numerical solutions of waves by finite element method. Numerical calculations of the defined errors in 1D homogeneous and heterogeneous media allow validating the proposed error estimation approach. The application field of this work is the numerical modelling of the seismic wave propagation in geophysical media or the ultrasonic wave propagation in polycrystalline materials.
|
Page generated in 0.0489 seconds