• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 10
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 41
  • 41
  • 22
  • 21
  • 11
  • 11
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Designing a quantum computer based on pulsed electron spin resonance

Morley, Gavin W. January 2005 (has links)
Electron spin resonance (ESR) experiments are used to assess the possibilities for processing quantum information in the electronic and nuclear spins of endohedral fullerenes. It is shown that ¹⁵N@C₆₀ can be used for universal two-qubit quantum computing. The first step in this scheme is to initialize the nuclear and electron spins that each store one qubit. This was achieved with a magnetic field of 8.6 T at 3 K, by applying resonant RF and microwave radiation. This dynamic nuclear polarization technique made it possible to show that the nuclear T₁ time of ¹⁵N@C₆₀ is on the order of twelve hours at 4.2 K. The electronic T₂ is the limiting decoherence time for the system. At 3.7 K, this can be extended to 215 μs by using amorphous sulphur as the solvent. Pulse sequences are described that could perform all single-qubit gates to the two qubits independently, as well as CNOT gates. After these manipulations, the value of the qubits should be measured. Two techniques are demonstrated for this, by measuring the nuclear spin. Sc@C₈₂ could also be useful for quantum computation. By comparing ESR measurements with density functional theory calculations, it is shown how the orientation of a Sc@C₈₂ molecule in an applied magnetic field affects the molecule's Zeeman and hyperfine coupling. Hence the g- and A-tensors are written in the coordinate frame of the molecule. Pulsed ESR measurements show that the decoherence time at 20 K is 13 μs, which is 20 times longer than had been previously reported. Carbon nanotubes have been filled with endohedral fullerenes, forming 1D arrays that could lead to a scalable quantum computer. N@C₀₆ and Sc@C₈₂ have been used for this filling in various concentrations. ESR measurements of these samples are consistent with simulations of the dipolar coupling.
12

Flux pumping for high-Tc superconducting (HTS) magnets

Geng, Jianzhao January 2017 (has links)
High Tc superconductors are enabling in the generation of extremely high magnetic fields. Flux pumping is a promising technology which can be used to operate HTS magnets without significant loss. In this decade, several HTS flux pumps based on travelling magnetic waves have been developed, yet their physics is still unclear. This thesis established a framework in the area of flux pumping for HTS coils. It revealed the underlying physics of existing travelling wave flux pumps, which is an important theoretical contribution. Based on the thorough understanding of flux pumping mechanism, the author proposed two novel types of flux pumps. The new inventions make flux pumping much easier, more controllable, and much less energy consuming. These flux pumps may promote the future applications of HTS magnets. This thesis can be a guidebook for researchers and engineers in developing flux pumps.
13

Alliages base Cobalt en surfusion sous champ magnétique intense : propriétés magnétiques et comportement à la solidification / Magnetic Properties and Solidification Behavior of Undercooled Co Based Alloys Under High Magnetic Field

Wang, Jun 24 September 2012 (has links)
Ce travail est dédié à l'étude de l'effet des champs magnétiques sur les propriétés magnétiques et le comportement à la solidification d'alliages à base de Cobalt en surfusion sous champ magnétique intense. Les alliages à base Co sont d'excellents candidats pour obtenir une surfusion en dessous ou proche du point de Curie sous champ intense en raison du faible écart entre ce point de Curie et la température du liquidus. Dans cette étude, un dispositif haute température de surfusion intégrant une mesure magnétique a été construit dans un aimant supraconducteur, et est utilisé pour la mesure in situ de l'aimantation de liquides surfondus et pour l'étude du sur-refroidissement et de l'évolution de la microstructure de solidification en champ intense. Le cobalt liquide en surfusion est fortement magnétique sous champ, et son aimantation est même supérieure à celle du solide au chauffage à la même température. L'aimantation de l'alliage proche eutectique Co-B en surfusion dépend de la température de surchauffe, tandis que le Co-Sn en surfusion est toujours paramagnétique. La surfusion moyenne et l'étendue de la recalescence de différents métaux et alliages est affectée par un champ externe. En champ magnétique uniforme, la surfusion du Cuivre est amplifiée, tandis que la surfusion du Cobalt et de Co-Sn reste identique. Cependant, l'étendue de la recalescence du Cobalt et de Co-Sn est réduite, et l'effet est d'autant plus important pour des teneurs supérieures en Cobalt. Le champ magnétique promeut la précipitation de la phase dendritique a-Co et la formation d'eutectique anormal dans la microstructure des alliages Co-Sn surfondus. Les processus d'évolution de la microstructure sont affectés par le champ magnétique, et dépendent de l'intensité du champ et de la surfusion. Ce travail offre de nouveaux horizons dans l'étude des propriétés magnétiques d'alliages métalliques en forte surfusion et dans l'étude de la solidification hors équilibre sous champ magnétique intense. / This work is devoted to the investigation of the magnetic field effect on the magnetic properties and solidification behavior of undercooled Co based alloys in high magnetic field. Co based alloys are promising candidates to be undercooled below or approaching their Curie point in strong magnetic field due to their small temperature difference between liquid line and Curie point. In this dissertation, a high temperature undercooling facility with magnetization measurement system is built in a superconducting magnet, and is used for in situ measurement of the magnetization of the undercooled melts and study the undercoolability and solidification microstructure evolution in magnetic field. The deep undercooled Co melt is strongly magnetized in magnetic fields, and its magnetization is even larger than the magnetization of heated solid at the same temperature. The magnetization of undercooled Co-B near eutectic alloy is related with overheating temperature while the undercooled Co-Sn melt is always in paramagnetic state. Mean undercooling and recalescence extent of different metals and alloys are affected by external field. In uniform magnetic field, the undercooling of Cu is enhanced while the undercoolings of Co and Co-Sn keep constant. However, the recalescence extents of Co and Co-Sn alloys are reduced, and with the increasing Co content, the effect becomes larger. Magnetic field promotes the precipitation of αCo dendrite phase and the formation of anomalous eutectics in solidified microstructure of undercooled Co-Sn alloys. The microstructure evolution processes are affected by magnetic field depending on the field intensity and undercooling. This work opens a new way to investigate the magnetic properties of deeply undercooled metallic melts and non-equilibrium solidification in strong magnetic fields.
14

Transport électronique quasi-balistique dans les nanofils d'InAs et d'InSb sous champ magnétique / Quasi-ballistic electronic transport in InAs and InSb nanowires under high magnetic field

Vigneau, Florian 25 October 2016 (has links)
La structure de bande et les propriétés électroniques des nanofils d’InAs et d’InSb sont étudiées par transport électronique en régime quasi-balistique et sous un champ magnétique montant jusqu’à 55T. Le régime quasi-balistique est mis en évidence par la quantification de la conductance. La structure de bande est sondée par l’analyse des plateaux de conductance en fonction de la concentration électronique. L’application du champ magnétique lève la dégénérescence de spin et la dégénérescence orbitale. Sous champ magnétique perpendiculaire à l’axe du nanofil, les bandes évoluent vers la quantification de Landau, accompagnée d’une réduction de la rétrodiffusion. Des fluctuations quasi-périodiques de la conductance sont mesurées en fonction du champ magnétique parallèle à l’axe du nanofil. Elles révèlent le confinement des porteurs à l’intérieur du nanofil et la formation d’orbites de Landau dans la direction du transport. Le transport électronique cohérent est mis en évidence par l’observation de fluctuations universelles de conductance et du régime de Fabry-Pérot électronique. Enfin, la mesure de photoconductivité révèle la présence de barrières de Schottky au niveau des contacts et une anisotropie en fonction de la direction de polarisation linéaire inattendue pour des nanofils d’InSb de structure cristalline Blende de Zinc. / The subband structure and electronic properties of InAs and InSb nanowires are studied experimentally by measuring the electronic transport in the quasi-ballistic regime and under magnetic field up to 55T.The quasi-ballistic regime is highlighted by the conductance quantization. The band structure is probed by analyzing the conductance plateaus as a function of the gate voltage. The application of a magnetic field lifts the orbital and spin degeneracy. Under a magnetic field perpendicular to the NW axis subbands evolved towards Landau quantization together with backscattering reduction. Fluctuations of the magneto-conductance are observed in function of magnetic field parallel to the nanowire axis. They reveal the carriers confinement within the nanowire and Landau orbits emergence in the transport direction. The coherent electron transport is jointly studied in these systems. It is highlighted by the observation of universal conductance fluctuations and electronic Fabry-Pérot oscillations. Finally the low-temperature photoconductivity measurement reveals the presence of Schottky barriers at the contacts and unexpected anisotropy according to the direction of linear polarization for InSB Zinc Blende nanowires.
15

Magnetism in quasi-low-dimensional systems investigated with muon spin rotation and high magnetic fields

Franke, Isabel January 2011 (has links)
This thesis presents the investigation of magnetism in a selection of low-dimensional systems and its relation to other physical properties, such as superconductivity. The techniques employed are muon spin rotation and pulsed magnetic field magnetisation. The ability of muons to directly probe the local field is used to study SrFeAsF, which is a parent compound of the high-temperature superconducting pnictides. This revealed that the magnetic and structural transitions are separated in this system. I then demon- strate the coexistence of magnetism and superconductivity in NaFeAs for the first time. This discovery is of great interest since the interplay between magnetism and supercon- ductivity is thought to play an important role for high-temperature superconductivity. I further investigate the effect of partially replacing Fe with Co in NaFeAs. I study the ordering and spin reorientation in the Mott insulator Sr₂IrO₄, which has been suggested as a possible high-temperature superconductor. The complex magnetism observed in this system is contrasted to that in related iridates Ca₄IrO₆, Ca₅Ir₃O₁₂ and Sr₃Ir₂O₇. By combining pulsed-field magnetization and low magnetic field experiments with μSR on a series of coordination polymers. I am able to determine the size and direction of the magnetic exchange interaction. I demonstrate how it is possible to adjust the in- teractions by altering the molecular architecture of these Cu-based spin- 1 2 compounds. This is a significant contribution since it will lead to the targeted design of magnetic systems that can be utilized to experimentally test fundamental theories of magnetism.
16

Electronic properties of quasi-one-dimensional systems (C60@SWCNTs and InAs nanowires) studied by electronic transport under high magnetic field / Propriétés électroniques des systèmes quasi-unidimensionnels (C60@SWCNTs et nanofils d'InAs) étudiés par le transport électronique sous champ magnétique intense

Prudkovskiy, Vladimir 14 June 2013 (has links)
Cette thèse présente des mesures de transport électronique dans des systèmes quasi-unidimensionnels (quasi-1D) sous champ magnétique intense. Deux systèmes différents présentant un confinement électrique quasi-1D ont été considérés: les peapods de carbone (C60@SWCNTs) et les nanofils d'InAs. L’objectif de ces travaux consiste à sonder les propriétés électroniques spécifiques de ces systèmes quasi-1D par les mesures de magnétotransport sur les nano-objets uniques. Dans les deux cas, les expériences sous champs magnétiques intenses ont été accompagnée par des caractérisations structurales et des mesures de conductance à champ magnétique nul.L'encapsulation de diverses molécules à l'intérieur de nanotubes de carbone (CNTs), comme par exemple les fullerènes C60, constitue une des voies prometteuses vers l'accordabilité de la conductance des CNTs. Parmi la grande variété des nanotubes de carbone remplis, les peapods représentent une structure hybride pionnière découvert en 1998. Depuis lors, leur structure électronique a fait l’objet d’études théoriques controversées avec un nombre limité de réalisations expérimentales. Dans cette thèse, les propriétés électroniques des peapods individuels ont été étudiés en combinant les mesures de spectroscopie micro-Raman et de magnétotransport sur les mêmes échantillons. Nous avons constaté que les C60 encapsulés modifient fortement la structure de bande électronique des nanotubes semi-conducteurs au voisinage du point de neutralité de charge. Cette modification comprend un déplacement rigide de la structure électronique et un remplissage partiel de la bande interdite. Nous avons aussi montré que l’excitation UV sélective des fullerènes conduit à une forte modification du couplage électronique entre les C60 et le CNT induite par la coalescence partielle des C60 et de leur distribution à l'intérieur du tube. Les résultats expérimentaux sont supportés par des simulations numériques de la densité d'états et de la conductance des nanotubes de carbone avec des fullerènes fusionnés à l'intérieur (K. Katin, M. Maslov).Les nanofils semiconducteurs (sc-NWs) font l'objet de recherches actives depuis ces dix dernières années. Ils représentent des systèmes modèles pour l’étude des propriété électronique objet quasi-1D. Ils représentent en outre des possibilités de modulation de la structure de bande aussi que de contrôle de la densité de porteurs. Dans ce domaine de recherche, les nanofils semi-conducteurs à base de composes III-V tel que InAs, ont une place particulière en raison de la faible masse effective des porteurs de charge. Nous avons étudié la conductance de nanofils individuels dans une large gamme de champs magnétiques (jusqu'à 60T). Les mesures en champ nul et en champ faible ont démontré un transport faiblement diffusif dans ces nanofils. Les mesures de transport sous champ magnétique intense ont révélé une forte chute de la conductance au dessus d'un champ critique qui s'élève clairement avec l'énergie de Fermi. Cet effet est interprété par la perte de canaux de conduction une fois que toutes les sous-bandes magnéto-électriques, décalés vers les hautes énergies par le champ magnétique, ont traversé l'énergie de Fermi. Les calculs de structure de bande préliminaires (Y-M. Niquet), en prenant en compte les confinements latéraux et magnétiques, sont en bon accord qualitatif avec les résultats observés dans le régime de champ magnétique intense. Ce résultat est la première observation des effets de structure de bande dans les expériences de magnéto-transport sur les sc-NWs / The scope of this thesis is related to the electronic properties of quasi 1D systems probed by high field magnetotransport. Two different systems exhibiting quasi-1D confinement have been considered: carbon C60 peapods (C60@SWCNTs) and InAs semiconductor nanowires. The magnetotransport measurements on single nano-objets have been used to investigate the specific electronic structure of these 1D systems. In both cases, the high magnetic fields experiments have been supported by structural characterisation and conductance measurements at zero field.The encapsulation of various molecules inside carbon nanotubes (CNTs), as for instance C60 fullerenes encapsulated in SWCNT, constitutes promising routes towards the tunability of the CNT conductance. Among the wide variety of filled CNTs, peapods represent a pioneer hybrid structure discovered in 1998. Since that time, their electronic structure has been subjected to intense and controversial theoretical studies together with a limited number of experimental realizations. In this thesis the electronic properties of individual fullerene peapods have been investigated by combining micro-Raman spectroscopy and magnetotransport measurements on the same devices. We bring evidence that the encapsulated C60 strongly modify the electronic band structure of semiconducting nanotubes in the vicinity of the charge neutrality point, including a rigid shift and a partial filling of the energy gap. In addition by playing with a selective UV excitation of the fullerene, we demonstrate that the electronic coupling between the C60 and the CNT is strongly modified by the partial coalescence of the C60 and their distribution inside the tube. The experimental results are supported by numerical simulations of the Density of States and the conductance of CNTs with coalesced fullerenes inside (K. Katin, M. Maslov).Semiconductor nanowires (sc-NWs) are being the subject of intense researches started a decade ago. They represent model systems for the exploration of the electronic properties inerrant to the quasi1-D confinement. Moreover they offer the possibility to play with band structure tailoring and carrier doping. In this direction III-V sc-NWs such as InAs NWs have played a particular role due to the small electron effective mass. We have studied the high magnetic field conductance of single nanowires. Prior to the high field measurements, the zero and low field investigations have demonstrated a weakly diffusive regime of the carrier transport in these wires. The high field investigations have revealed a drastic conductance drop above a critical field, which clearly rises with the Fermi energy. This effect is interpreted by the loss of conducting channels once all the magneto-electric subbands, shifted toward the high energy range by the magnetic field, have crossed the Fermi energy. Preliminary band structure calculations (Y-M. Niquet), taking into account the lateral and magnetic confinements, are in fairly good qualitative agreement with the observed result in the high field regime. This result is the first observation of band structure effects in magneto-transport experiments on sc-NWs
17

Etudes de FeSe et CePt2In7 sous conditions extrêmes / Studies of FeSe and CePt2In7 under extreme conditions

Raba, Matthias 07 December 2018 (has links)
La supraconductivité non-conventionnelle a récemment été observée à proximité d'un point critique induit sous pression dans CePt$_2$In$_7$ et dans FeSe. Le premier est un fermion lourd tandis que le deuxième fait parti de la famille des supraconducteurs à base de Fer. Cette thèse a pour objectif de contribuer à la compréhension de ces systèmes à électrons fortement corrélés en étudiant les évolutions des structures cristallographiques et magnétiques, ainsi que les surfaces de Fermi sous conditions extrêmes.Tout d'abord, nous présentons une étude de diffraction de neutrons dans la phase magnétique de CePt$_2$In$_7$. Une seule structure magnétique, avec comme vecteur de propagation $textbf{Q} = (0.5,0.5,0.5)$ et $0.45~mu_B$ par atome de Cérium à 2 K, a été détectée en dessous de $T_N = 5.5$ K.Ensuite, des mesures de torque sous champ pulsé de CePt$_2$In$_7$ ne montrent aucun changement des surfaces de Fermi jusqu'à 70 T, bien au-dessus du point critique quantique induit sous champ, attendu à $55-60$ T selon la littérature. Cependant, ces mesures révèlent une claire anomalie métamagnétique à 47 T, très peu dépendante de la température et de l'orientation du champ ainsi qu'une chute des masses effectives vers 50 T. Nous suggérons que ces deux derniers éléments sont la manifestation d'un changement de valence des atomes de Ce de l'ordre de 0.06 électron par atomes de Cérium.L'étude des surfaces de Fermi de CePt$_2$In$_7$ sous pression a nécessité un développement instrumental à partir d'un circuit résonant à base d'une diode tunnel, combinée avec une cellule de pression de type Bridgman. Nous montrons qu'il est tout à fait possible de sonder les surfaces de Fermi à la fois sous champ magnétique et sous pression avec cette technique. Cependant, la fragilité du système résonnant nous amène à considérer des améliorations en vue de fiabiliser la mesure.Enfin, nous analysons une expérience de diffraction de rayons X sur un échantillon de FeSe sous pression hydrostatique. A 20 K, nous quantifions un durcissement de l'axe cristallographique $c$ qui s'opère à 1.9 GPa. A 50 K, outre le passage d'une maille orthorhombique à tétragonale à 1 GPa, nous mettons en évidence qu'une symétrie monoclinique s'installe à partir de 2 GPa, où, selon la littérature, une phase antiferromagnétique apparaît. / Unconventional superconductivity was recently observed in the vicinity of a pressure-induced quantum critical point in CePt$_2$In$_7$ and FeSe. The former is a heavy fermion compound, while the latter is an iron-based superconductor. This PhD thesis aims at improving our understanding of the physics of these newly discovered strongly correlated electron systems. This is achieved by experimental investigation of the evolution of crystal and magnetic structures, as well as of the Fermi surfaces under extreme conditions of high magnetic fields, high pressure, and low temperatures.We have investigated the magnetic structure of CePt$_2$In$_7$ by neutron diffraction. We observed only one magnetic propagation vector $textbf{Q} = (0.5, 0.5, 0.5)$ below $T_N = 5.5$ K. The magnetic moment is estimated at $0.45~mu_B$ per cerium atom at 2 K.Our torque measurements on CePt$_2$In$_7$ in pulsed fields suggest that the Fermi surfaces remain unchanged up to 70 T. This is well above the field-induced quantum critical point, which is expected to occur at $55-60$ T according to previous studies. However, a clear metamagnetic-like anomaly is found at 47 T. The anomaly is almost temperature and field-angle independent. Furthermore, a sudden drop of the effective mass is observed at about the same field. We suggest that the last two observations are most naturally accounted for by a valence crossover, where the cerium valence changes by about 0.06, the order of magnitude expected in Ce-based compounds.In order to study the Fermi surfaces of CePt$_2$In$_7$ under pressure, we developed a tunnel diode oscillator combined with a Bridgman-type pressure cell. We have demonstrated that this set-up is suitable for measuring quantum oscillations both at high magnetic fields and under high pressure. However, the working conditions of the oscillator have to be improved in order to obtain a more reliable system.Finally, we performed an X-ray diffraction experiment on FeSe under hydrostatic pressure. At 20 K, we found a change of the bulk modulus along the $c$ axis at 1.9 GPa. At 50 K, the orthorhombic to tetragonal crystallographic phase transition occurs at 1 GPa. We found evidences that this is followed by the emergence of a monoclinic symmetry above 2 GPa, where an antiferromagnetic phase was previously reported.
18

Études par résonance magnétique nucléaire des ordres en compétition dans les cuprates supraconducteurs / Nuclear magnetic resonance studies of competing orders in cuprate superconductors

Vinograd, Igor 19 December 2018 (has links)
Les cuprates sont des matériaux que l’on peut faire passer d'un isolant antiferromagnétique à un métal normal en augmentant leur densité de porteurs par dopage chimique. Aux dopages intermédiaires, une riche variété de phases électroniques apparaît aux côtés de la phase supraconductrice, ou même entrelacée avec elle. Le but de cette thèse était de caractériser divers aspects de la compétition entre la supraconductivité et les ordres de charge ou de spin, en utilisant la résonance magnétique nucléaire (RMN). Une première partie du travail a consisté à améliorer la modélisation des spectres RMN des noyaux de 17O dans les deux phases onde de densité de charge (ODC) présentes dans YBa2Cu3Oy: l’ordre à courte portée et l’ordre à longue portée (induit par le champ magnétique). En plus de fournir un cadre d'analyse beaucoup plus précis pour les données de RMN en fonction du champ, du dopage et de la pression (voir ci-après), les résultats indiquent que l’ODC à haut champ est uni-axiale (c'est-à-dire avec un vecteur d'onde unique q), avec une période commensurable avec le réseau de trois cellules unitaires (q = 1/3). Le deuxième aspect de la compétition de phases abordé dans ce travail est l'effet (controversé) de la pression hydrostatique. Nos mesures montrent qu'une pression de 1,9 GPa n'affaiblit que très légèrement l’ODC à courte portée dans l'état normal ainsi que l’ODC à longue portée observée à haut champ. Les résultats soutiennent l’hypothèse selon laquelle l'augmentation continue de Tc lorsque la pression augmente jusqu'à 15 GPa est presque entièrement due à une diminution progressive de la force de l’ODC. Ceci montre que la pression hydrostatique est un paramètre permettant de contrôler la compétition entre l’ODC et la supraconductivité dans les cuprates.Dans la troisième partie de la thèse, des mesures du taux de relaxation spin-réseau (1/T1) des noyaux de 139La ont permis d’étudier l'effet d'un champ magnétique sur la mise en ordre vitreuses des spins dans La2-xSrxCuO4. En utilisant des champs élevés jusqu’à 45 T, nous montrons que le champ est capable d’induire une phase gelée, ou presque gelée, à des niveaux de dopage bien supérieurs à ceux supposés précédemment, à savoir jusqu’au dopage critique attribué à l’extrémité de la phase pseudogap mais pas au-delà de ce point, ou pas loin au-delà. Ce résultat a des implications importantes pour l'interprétation de la phase de pseudogap et de la criticité quantique qui lui est associée. / Cuprates are materials that can be tuned from an antiferromagnetic insulator to a normal metal by increasing the carrier density through chemical doping. At intermediate doping, a rich variety of electronic phases emerges alongside, or intertwined, with the superconducting phase. The aim of this thesis was to characterise various aspects of the competition between superconductivity and charge or spin order, using nuclear magnetic resonance (NMR).A first part of the work consisted in improving the modelling of 17O NMR spectra in the two charge-density wave (CDW) phases present in YBa2Cu3Oy: the short-range order and the (magnetic-field induced) long-range order. Besides providing a much more accurate analysis framework for NMR data as a function of field, doping and pressure (see hereafter), the results indicate that the CDW in high-fields is uniaxial (i.e. single wave vector q) and commensurate with the lattice, with a period of three unit cells (q=1/3).The second aspect of phase competition addressed in this work is the (controversial) effect of hydrostatic pressure. Our measurements show that a pressure of 1.9 GPa weakens the short-range CDW in the normal state and the long-range CDW observed in high fields only slightly. The results support the proposal that the continuous rise in Tc upon increasing pressure up to 15 GPa arises almost entirely from a gradual decrease of the CDW strength. This establishes hydrostatic pressure as a tuning parameter of the competition between CDW order and superconductivity in the cuprates.In the third part of the thesis, 139La spin-lattice relaxation rate (1/T1) measurements were used to study the effect of a magnetic field on glassy spin ordering in La2-xSrxCuO4. Using high fields up to 45 T, we reveal that the field is able to induce a frozen, or nearly so, phase at doping levels much higher than previously assumed, namely up to the putative endpoint of the pseudogap boundary, but not, or not far, beyond that point. This result has important implications for interpreting the pseudogap phase and its associated quantum criticality.
19

Développement de nouvelles expériences de corrélation en RMN haute-résolution mettant en œuvre un encodage spatial fréquentiel de l'échantillon / Development of new correlation experiments in high resolution NMR using a spatial frequency encoding of the sample

Pitoux, Daisy 22 June 2015 (has links)
La plupart des développements qui ont été effectués ces dernières années dans le domaine de la RMN rapide ont permis d’accélérer considérablement l’acquisition des expériences multidimensionnelles. Cependant, dans le cas de l’étude des interactions proton-proton, qui constituent des sondes structurales précieuses des molécules, l’ensemble du processus analytique demeure une tâche difficile et longue pour les chimistes. Une raison est la complexité et la quantité des informations rendues disponibles qui contribue au profil spectral global, même dans le cas de molécules de petites et moyennes tailles. En l’état de l’art actuel, il était difficile d’optimiser simultanément la résolution des spectres de corrélations et la durée d’analyse nécessaires pour les acquérir et les exploiter. Ce projet de thèse avait pour but de développer une approche RMN nouvelle et générale basée sur un encodage spatial fréquentiel de l’échantillon afin de simplifier et d’accélérer l’étude de molécules plus ou moins complexes. L’encodage spatial fréquentiel permet de contrôler sélectivement les évolutions de spins dans des régions localisées de l’échantillon et de les combiner dans des spectres RMN haute résolution dans lesquels le contenu analytique est aisément accessible. Dans une première partie, la théorie de l’encodage spatial en fréquence est présentée. Une méthode de simulation du signal RMN encodé est présentée, puis utilisée pour décrire la localisation du processus d’excitation sélective d’un système de spin modèle, en allant de l’analyse d’une cohérence unique vers la reconstruction du spectre encodé à travers le tube RMN. En parallèle, l’influence du champ magnétique sur la largeur de coupe et de sensibilité de ce type d’expériences est également étudiée grâce à cet outil de simulation. Dans une deuxième partie, deux développements méthodologiques sont présentés. Tout d’abord, l’expérience PCR-COSY donne accès, en un seul spectre, à la mesure totalement éditée et attribuable des couplages scalaires proton-proton pour une molécule donnée. Ensuite, l’expérience push-G-SERF permet de mesurer l’ensemble des couplages impliquant un proton sélectionné à partir d’un spectre présentant des signaux J-résolus dans la dimension indirecte et -résolus dans la dimension directe du spectre. Dans une troisième partie, les expériences basées sur un encodage spatial de l’échantillon sont appliquées à l’analyse conformationnelle d’un saccharide synthétique. Tout d’abord, les avantages et inconvénients de la mise en œuvre des techniques d’encodage spatial en fréquence à très haut champ sont discutés. Enfin, une stratégie d’analyse conformationnelle basée sur la spectroscopie J-éditée est présentée et appliquée avec succès à l’étude de cet oligosaccharide. / Most of the developments that have been made during the last years in the field of fast NMR have allowed for considerably accelerating the acquisition of multidimensional experiments. However, the analysis of proton-proton spin interactions, which are very important structural probes in molecules, still constitutes a tedious and time-consuming analytical process for most of the chemists. One reason is the complexity and the high number of homonuclear couplings that contribute to the overall lineshape in proton spectra, even for small or medium-sized compounds. It is thus nowadays very difficult to optimize both the resolution of correlation spectra, and the experimental time needed to acquire them, using state of the art high resolution methods. This thesis project aimed at developing a novel and general approach based on a spatial frequency encoding of the NMR sample in order to simplify and thus to accelerate the analysis of complex molecular systems. Spatial frequency encoding consists in controlling selectively spin evolutions in localized regions of the sample, and in combining them into high resolution experiments whose analytical content is easily accessible. In a first part, the theory of spatial frequency encoding is presented. A general method for simulating the encoded NMR signal is introduced, and it is applied to describe the localized selective excitation process of a model spin system, from the analysis of a single spin coherence, to the reconstruction of the whole NMR spectrum encoded throughout the sample. The magnetic field dependence of the slice selection process, as well as the overall sensitivity is also addressed through this simulation tool. In a second part, two methodological developments are presented. Firstly, the PCR-COSY experiment gives access, in a single spectrum, to a fully edited and assignable measurement of all the proton-proton scalar couplings in a given molecule. Secondly, the push-G-SERF experiment allows for measuring all the couplings involving a selected proton on correlations showing a J-resolved and a -resolved structure in the indirect and direct domain of the resulting 2D spectrum, respectively. In a third part, high-resolution experiments based on a spatial frequency encoding of the sample are applied to the conformational analysis of a synthetic saccharide. First, advantages and drawbacks of an implementation of spatial frequency encoded techniques at very high field are discussed. Then, a conformational analysis strategy based on J-edited spectroscopy is introduced, and successfully applied to the study of this oligosaccharide.
20

Complexes multiexcitoniques dans des boites quantiques semiconductrices / Multiexcitons in semiconductor quantum dots

Molas, Maciej 14 November 2014 (has links)
Le présent travail se concentre sur l'étude des niveaux d'énergie et des processus de recombinaison de complexes excitoniques larges - jusqu'à quatre paires électron-trou - considérés au niveau d'une boîte quantique unique remplie optiquement. Les boîtes étudiées dans ces expériences, formées à partir d'une matrice de Ga(Al)As, représentent un système à zéro dimension avec un confinement relativement fort et peuvent en effet avoir plusieurs couches électroniques s, p, comme dans le cas d'atomes. Les boîtes peuvent être facilement sélectionnées à l'état individuel du fait de la très faible densité de surface des structures considérées. Les techniques expérimentales utilisée dans ce travail comprennent : les méthodes de spectroscopie sur boîtes uniques, la détection optique résolue en polarisation, l'utilisation de champs magnétiques intenses et des mesures de corrélation de photons. En ce qui concerne les expériences de photoluminescence, nous avons distingué les excitations en dessous de la barrière de celles se produisant en dessus. Finalement, des expériences de spectroscopie d'excitation de la photoluminescence ont aussi été réalisées en champ magnétique.En fonction des conditions d'excitation, les boîtes étudiées présentent une multitude de raies relativement étroites, chaque boîte révélant un schéma caractéristique de raies groupées en amas distincts, similaires à une série de couches électroniques pour un atome. La présente étude s'est concentrée sur l'intervalle spectral correspondant aux couches électroniques s et p. L'identification des raies spectrales s'est principalement basé sur les résultats obtenus lors d'observations résolues en polarisation ou bien lors de mesures de corrélation de photons. Ces expériences révèlent trois familles distinctes de raies d'émission, chacune étant respectivement reliée à un complexe électron-trou (excitonique) neutre, chargé positivement, ou bien négativement. Une attention particulière a été portée aux raies d'émission observées dans une cascade en quatre étapes partant d'un complexe à quatre excitons, jusqu'au niveau de la recombinaison d'un exciton neutre, ainsi que celles observées dans une cascade en deux étapes partant d'un bi-exciton chargé positivement, jusqu'à la recombinaison d'un état singulet ou triplet d'un exciton chargé positivement. La structure fine induite par les interactions d'échange - et préalablement observée lors des mesures résolues en polarisation à champ magnétique nul - a été étudiée pour différentes raies d'émission. L'évolution de ce dédoublement de raies a été examiné en fonction du champ magnétique. Les résultats sont interprétés en terme d'anisotropie de forme des boîtes et d'une interaction avec les effets spin-orbite, caractéristiques des différents processus de recombinaison. Une partie importante de ce travail a été dévolue à la comparaison entre le spectre d'émission mesuré pour des puissances d'excitations relativement importantes avec les spectres d'excitation de la photoluminescence. De telles expériences ont aussi été conduites sous champ magnétique. Comme attendu, les spectres d'émission des complexes excitoniques d'ordres élevés sont particulièrement affectés par les interactions coulombiennes entre porteurs, et sont par conséquent très différents des spectres d'excitation de la photoluminescence (quasi-absorption) des excitons neutre et chargés. Deux types d'évolution en champ magnétique de raies d'absorption observées (résonance) - reliées aux couches s et p - ont été mesurés. Les résonances de type s sont attribuées à la transition entre un niveau excité de trou de la bande de valence et l'état fondamental de la couche s dans la bande de conduction. Une raie d'émission, observée dans le groupement de la couche p, coïncide cependant avec la raie d'absorption. Nous concluons que cette résonance vient d'un état excitonique excité qui se recombine de manière radiative dû à un blocage efficace de sa relaxation vers l'état fondamental. / The studies of energy levels and of recombination processes of single quantum dots, optically filled with up to four electron-hole pairs are the subject of this work. The dots used in the present experiments, formed out of the Ga(Al)As matrix, represent relatively strongly confined zero-dimensional systems, and display several, atomic-like s-, p-,. . . shells. Single dots can be easily selected in our structures as they exhibit an extremely low surface density. Experimental techniques applied in this work include the methods of single dot spectroscopy, polarization resolved techniques, application of magnetic fields and photon correlation measurements. Distinct, below- and above-dot-barrier laser excitation has been used for photoluminescence experiments. Importantly, the photoluminescence excitations experiments (in magnetic fields) have been carried out, as well.Depending on excitation conditions (power and wavelength of laser), the investigated dots show a multitude of relatively sharp lines, each dot displaying the same, characteristic pattern of lines, grouped into distinct clusters corresponding to subsequent atomic-like shells. Spectral range covering the s- and p-shells region has been explored in the present studies. The assignment of spectral lines has been at large provided by the results of polarization resolved micro-photoluminescence and photon correlation experiments. Those experiments depict three distinct families of emission lines, each related to recombination of, correspondingly, neutral, positively charged and negatively charged electron-hole (excitonic) complexes. The emission lines observed within a four step cascade of a neutral quadexciton down to the recombination of a neutral exciton and two step cascades of positively charged biexcitons down to the recombination of a singlet and triplet state of positively charged excitons have been studied in details. The fine structure, induced by exchange interactions and preliminarily seen in (linear) polarization resolved emission experiment at zero magnetic field, has been studied for various emission lines (related to s- and p- shells). The evolution of this splitting has been then investigated as a function of the magnetic field. The results are interpreted in terms of the shape anisotropy of dots and an interplay between spin- and orbital-mediated effects, characteristic of different recombination processes. A significant portion of this work has aimed to compare the emission spectra measured at a relatively high excitation power (which include the recombination processes of up to quadexciton complexes) with photoluminescence excitation spectra (which probe the excited states of a single exciton). Such experiments have been also carried out as a function of the magnetic field. As expected the emission spectra of high order excitonic complexes are indeed greatly affected by Coulomb interactions between carriers and in consequence are in general very different from the photoluminescence excitation spectra (quasi absorption) of a neutral and charged exciton. Two types of the magnetic field evolution of detected absorption lines (resonant peaks), the s- and p-shell related, have been measured. The s-shell like resonant peaks were attributed to the transition between the excited hole levels in the valence band and the ground s-shell level in the conduction band. Nevertheless, there exists an emission line which is observed within the p-shell cluster, and which coincides with the absorption line. That "coinciding resonance" is concluded to be an excited excitonic state which recombines radiatively due to efficient blocking of its relaxation towards the ground state.

Page generated in 0.051 seconds