1 |
Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channelsXiang, Xue January 2018 (has links)
In a rectangular cross-section wind tunnel a separated oblique shock reflection is set to interact with the turbulent boundary layer (oblique SBLI) both on the bottom wall and in the corner formed by the intersection of the floor with the side-walls. In such a scenario, shock-induced separation is often seen in each of the streamwise corners, resulting in a highly three-dimensional flow field in the near-wall region. To examine how the corner separations can affect the `quasi-two-dimensional' main interaction and by what mechanism this is achieved, an experimental investigation has been conducted. This examines how modifications to the corner separation influence an oblique shock reflection. The nature of the flow field is studied using flow visualisation, Pressure Sensitive Paint and Laser Doppler Anemometry. A nominal freestream Mach number of 2.5 is used for all experiments with a unit Reynolds number of $40\times10^6$m$^{-1}$, and the shock-generator angle is set to $8^\circ$. The flow conditions are chosen to result in substantial separations both in the corners and along the centreline for the baseline case, which is thought to be a good starting point for this study. The results show that the size and shape of central separation vary considerably when the onset and magnitude of corner separation change. The primary mechanism coupling these separated regions appears to be the generation of compression waves and expansion fans as a result of the displacement effect of the corner separation. The presence and strength of the expansion waves have been overlooked in previous studies. This is shown to modify the three-dimensional shock-structure and alter the adverse pressure gradient experienced by the tunnel floor boundary layer. It is suggested that a typical oblique SBLI in rectangular channels features several zones depending on the relative position of the corner waves and the main interaction domain. In particular, it has been shown that the position of the corner `shock' crossing point, found by approximating the corner compression waves by a straight line, is a critical factor determining the main separation size and shape. Thus, corner effects can substantially modify the central separation. This can cause significant growth or contraction of the separation length measured along the symmetry line from the nominally two-dimensional baseline value, giving a fivefold increase from the smallest to the largest observed value. Moreover, the shape and flow topology of the centreline separation bubble is also considerably changed by varying corner effects.
|
2 |
Characterization of the Quiet Flow Freestream and a Flat Plate Model in the Boeing/AFOSR Mach 6 Quiet TunnelDerek V Mamrol (11711882) 22 November 2021 (has links)
<div>The ambient pressure fluctuations within a wind tunnel test environment can severely affect the boundary layer transition witnessed on test articles The Boeing/AFOSR Mach 6 Quiet Tunnel was designed to minimize these fluctuations, also referred to as noise, and is the world's premier facility for studying hypersonic boundary layer transition in a quiet flow environment. All experiments performed for this work were conducted at this facility.</div><div><br></div><div> </div><div> The freestream flow field of this tunnel has been characterized multiple times since its creation, however an extensive three-dimensional spatial sweep has never been conducted. A pitot rake model was designed to allow for an extensive spatial survey of tunnel noise. This model created measurement capabilities that were previously unknown to the BAM6QT facility, including the ability to take concurrent freestream pitot probe measurements. The performance of this new measurement method was evaluated, and suggestions for future verification tests are made. The pitot rake appears to suffer from probe-probe interactions in certain configurations, and has demonstrated variation in measurements that depends on the individual sensor used.</div><div><br></div><div> </div><div> This new measurement apparatus was used to investigate the effect that cavities in the tunnel wall created by the installation of new optical windows had on the freestream noise level. A control dataset corresponding to a perfectly conformal tunnel wall was not collected during this work. The experiments conducted provide evidence that the tunnel wall cavities do increase the noise downstream of their location by approximately 100%, however a control dataset is needed to verify this finding.</div><div><br></div><div> </div><div> In addition to tunnel characterization, a novel flat plate model was evaluated for use in the BAM6QT. This model was intended for use as a platform for observing second mode instability growth. These experiments show that the initial flat plate geometry proved incompatible with the BAM6QT as the tunnel could not achieve nominal flow conditions with the model installed. The flat plate model was streamlined to rectify the startup issue, but no evidence of the second mode instability was found. A 2.5° half angle cone is being designed to replace the flat plate model as a platform for the continuation of this project.</div>
|
3 |
Enhancement of CFD Surrogate Approaches for Thermo-Structural Response Prediction in High-Speed FlowsBrouwer, Kirk Rowse January 2018 (has links)
No description available.
|
4 |
Using Plasmas for High-Speed Flow Control and Combustion ControlKeshav, Saurabh 01 October 2008 (has links)
No description available.
|
5 |
Model Reduction of Computational Aerothermodynamics for Multi-Discipline Analysis in High Speed FlowsCrowell, Andrew R. 08 August 2013 (has links)
No description available.
|
Page generated in 0.0749 seconds