• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 12
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The study of growth and characterization of Group III nitride semiconductor by RF Plasma-assisted Molecular Beam Epitaxy

Huang, Chih-Hao 25 June 2004 (has links)
The group III nitride semiconductor grown on c-plane sapphire by radio frequency plasma assisted molecular beam epitaxy has been studied. To archive good quality GaN film, nitridation and low temperature buffer layer were applied to overcome the issue of lattice mismatch. Low temperature and long period nitridation process shows better improved of optical properties and crystal quality of GaN film. Buffer layer grown with slightly Ga-rich, substrate temperature at 522¢J, for 2 minutes leads to better GaN film. High substrate temperature and sufficient nitrogen to gallium ratio are two important factors to control the growth of the good quality GaN epilayer. Chemical etching and observation of surface reconstructions were used to characterize the polarity of group III nitrides. The Ga-polarity GaN film shows 2x surface reconstruction with high chemical resistance while the N-polarity is sensitive to chemical and displays the 3x reconstruction pattern. The process of indium incorporated with GaN is very sensitive to growth temperature. The indium content decreased with increasing the substrate temperature and also decreased along the growth direction. The N-polar GaN with an indium-facilitated growth technique was also studied. Upon the incorporation of indium during growth, the photoluminescence intensity and electron mobility of GaN has been enhanced by a factor of 15 and 6 respectively. The electron concentration drastically increases by several orders of magnitude. The biaxial strain of GaN film estimated with Micro-Raman technique reduces from 0.6729 to 0.5044GPa. The full-widths at half maximum of asymmetric (10-12) x-ray reflection which related to the density of overall threading dislocations increases from 593 to744 arcsec. In contrast, the symmetric (0002) reflection related only to threading dislocations having a non-zero c-component Burgers vectors reduces from 528 to 276 arcsec. The enhancement of GaN optical property is generally attributed to the reduction of non-zero c-component dislocations. The reduction in density is confirmed by cross-sectional transmission electron microscopy.
2

In-situ Untersuchungen zur Entstehung von Oberflächengittern in Polymeren

Henneberg, Oliver January 2004 (has links)
In festen azobenzenhaltigen Polymeren wurde bei Bestrahlung mit blauem Licht ein makroskopischer Materialtransport beobachtet. Um die Dynamik der Gitterentstehung zu verfolgen, wurde am Speicherring für Synchrotronstrahlung ein Gitterschreibaufbau errichtet. Damit konnte erstmals in dieser Arbeit die Gitterbildungsgeschwindigkeit in-situ simultan mit Röntgen- und Lichtstreuung untersucht werden. Mit Hilfe einer speziellen Anpassung der Röntgenstreutheorie konnten sehr gute Übereinstimmungen von theoretischen Berechnungen mit den Messergebnissen erzielt werden. Dabei konnte nachgewiesen werden, dass sich zeitgleich mit einem Oberflächengitter auch ein Dichtegitter entwickelt. Durch die Trennung beider Streuanteile ließ sich die Dynamik der Strukturentstehungen bestimmen. Des weiteren konnte erstmals mit Hilfe der Photoelektronenspektroskopie die molekulare Orientierung an der Oberfläche eines Oberflächengitters nachgewiesen werden. Die Bewegungsursache kann auf einen Impulsübertrag während der Isomerisierung zurückgeführt werden, während die Bewegungsrichtung durch den elektrischen Feldvektor festgelegt wird. Die Theorie der Gitterentstehung konnte verbessert werden. / Solid azobenzene containing polymers show a macroscopic material transport under illumination with blue light. A writing setup was constructed at a synchrotron beamline in order to investigate the dynamics of the grating formation. With this setup it was possible to record the grating velocity for the first time simultaneously with x-ray and laser light scattering. <br /> A very good consistency could be achieved between the experiments and a suitable accomodation of the x-ray scattering theory. The theory reveals, that a density grating develops simultaneously with a surface grating. By separation of both parts the dynamics was determined for the density and the surface grating.<br /> The molecular ordering was determined at the surface with photoelectron spectroscopy. A momentum transfer could be identified as the source of the movement while the electric field defines the direction of the movement. The theory of the grating formation was improved.
3

Studium struktury feromagnetických polovodičů metodami rtg rozptylu / Study of the structure of ferromagnetic semiconductors by x-ray scattering methods

Horák, Lukáš January 2014 (has links)
We studied epitaxial layers of Gallium Manganese Arsenide by various x-ray scattering methods. Since the positions of the Mn dopant in the a host GaAs lattice are crucial for magnetic properties of this material, we focused mainly on a development of the laboratory diffraction method capable to identify Mn in particular crystallographic positions. From the measured diffracted intensity distributed along Crystal Truncation Rods, it is possible deduce the density of Mn interstitials in two non-equivalent crystallographic positions. It is possible to decrease the interstitial Mn density by annealing. We demonstrated our method on severally annealed epitaxial layer. The depth profile of interstitial density was determined after each annealing. The annealing process was simulated by the solving of the Drift- Diffusion equations. From the comparison with the experimentally determined interstitial densities, we estimated the diffusivity of Mn interstitials in the GaAs lattice. Powered by TCPDF (www.tcpdf.org)
4

Epitaxy and characterization of SiGeC layers grown by reduced pressure chemical vapor deposition

Hållstedt, Julius January 2004 (has links)
<p>Heteroepitaxial SiGeC layers have attracted immenseattention as a material for high frequency devices duringrecent years. The unique properties of integrating carbon inSiGe are the additional freedom for strain and bandgapengineering as well as allowing more aggressive device designdue to the potential for increased thermal budget duringprocessing. This work presents different issues on epitaxialgrowth, defect density, dopant incorporation and electricalproperties of SiGeC epitaxial layers, intended for variousdevice applications.</p><p>Non-selective and selective epitaxial growth of Si<sub>1-x-y</sub>Ge<sub>x</sub>C<sub>y</sub>(0≤x≤30, ≤y≤0.02) layershave been optimized by using high-resolution x-ray reciprocallattice mapping. The incorporation of carbon into the SiGematrix was shown to be strongly sensitive to the growthparameters. As a consequence, a much smaller epitaxial processwindow compared to SiGe epitaxy was obtained. Differentsolutions to decrease the substrate pattern dependency (loadingeffect) of SiGeC growth have also been proposed. The key pointin these methods is based on reduction of surface migration ofthe adsorbed species on the oxide. In non-selective epitaxy,this was achieved by introducing a thin silicon polycrystallineseed layer on the oxide. The thickness of this seed layer had acrucial role on both the global and local loading effect, andon the epitaxial quality. Meanwhile, in selective epitaxy,polycrystalline stripes introduced around the oxide openingsact as migration barriers and reduce the loading effecteffectively. Chemical mechanical polishing (CMP) was performedto remove the polycrystalline stripes on the oxide.</p><p>Incorporation and electrical properties of boron-doped Si<sub>1-x-y</sub>Ge<sub>x</sub>C<sub>y</sub>layers (x=0.23 and 0.28 with y=0 and 0.005) with aboron concentration in the range of 3x10<sup>18</sup>-1x10<sup>21</sup>atoms/cm3 have also been investigated. In SiGeClayers, the active boron concentration was obtained from thestrain compensation. It was also found that the boron atomshave a tendency to locate at substitutional sites morepreferentially compared to carbon. These findings led to anestimation of the Hall scattering factor of the SiGeC layers,which showed good agreement with theoretical calculations.</p><p><b>Keywords:</b>Silicon germanium carbon (SiGeC), Epitaxy,Chemical vapor deposition (CVD), Loading effect, Highresolution x-ray diffraction (HRXRD), Hall measurements, Atomicforce microscopy (AFM).</p>
5

Defect Creation in InGaAs/GaAs Multiple Quantum Wells: Correlation of Crystalline and Optical Properties with Epitaxial Growth Conditions

January 2014 (has links)
abstract: Multiple quantum well (MQW) structures have been employed in a variety of solid state devices. The InGaAs/GaAs material system is of special interest for many optoelectronic applications. This study examines epitaxial growth and defect creation in InGaAs/GaAs MQWs at its initial stage. Correlations between physical properties, crystal perfection of epitaxial structures, and growth conditions under which desired properties are achieved appear as highly important for the realization and final performance of semiconductor based devices. Molecular beam epitaxy was utilized to grow InGaAs/GaAs MQW structures with a variation in deposition temperature T<sub>dep</sub> among the samples to change crystalline and physical properties. High resolution x-ray diffraction and transmission electron microscopy were utilized to probe crystal properties, whereas photoluminescence spectroscopy evaluated optical response. An optimal growth temperature T<sub>dep</sub>=505&deg;C was found for 20% In composition. The density of 60&deg; primary and secondary dislocation loops increased continuously at lower growth temperatures and reduced crystal perfection, as evaluated by lateral and vertical coherence lengths and diffuse scattering in reciprocal space maps. Likewise, the strength of non-radiative Shockley-Read-Hall recombination increased as deposition temperature was reduced. Elevated deposition temperature led to InGaAs decay in the structures and manifested in different crystalline defects with a rather isotropic distribution and no lateral ordering. High available thermal energy increased atomic surface diffusivity and resulted in growth surface instability against perturbations, manifesting in lateral layer thickness undulations. Carriers in structures grown at elevated temperature experience localization in local energy minima.InGaAs/GaAs MQW structures reveal correlation between their crystal quality and optical properties. It can be suggested that there is an optimal growth temperature range for each In composition with high crystal perfection and best physical response. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
6

Epitaxy and characterization of SiGeC layers grown by reduced pressure chemical vapor deposition

Hållstedt, Julius January 2004 (has links)
Heteroepitaxial SiGeC layers have attracted immenseattention as a material for high frequency devices duringrecent years. The unique properties of integrating carbon inSiGe are the additional freedom for strain and bandgapengineering as well as allowing more aggressive device designdue to the potential for increased thermal budget duringprocessing. This work presents different issues on epitaxialgrowth, defect density, dopant incorporation and electricalproperties of SiGeC epitaxial layers, intended for variousdevice applications. Non-selective and selective epitaxial growth of Si1-x-yGexCy(0≤x≤30, ≤y≤0.02) layershave been optimized by using high-resolution x-ray reciprocallattice mapping. The incorporation of carbon into the SiGematrix was shown to be strongly sensitive to the growthparameters. As a consequence, a much smaller epitaxial processwindow compared to SiGe epitaxy was obtained. Differentsolutions to decrease the substrate pattern dependency (loadingeffect) of SiGeC growth have also been proposed. The key pointin these methods is based on reduction of surface migration ofthe adsorbed species on the oxide. In non-selective epitaxy,this was achieved by introducing a thin silicon polycrystallineseed layer on the oxide. The thickness of this seed layer had acrucial role on both the global and local loading effect, andon the epitaxial quality. Meanwhile, in selective epitaxy,polycrystalline stripes introduced around the oxide openingsact as migration barriers and reduce the loading effecteffectively. Chemical mechanical polishing (CMP) was performedto remove the polycrystalline stripes on the oxide. Incorporation and electrical properties of boron-doped Si1-x-yGexCylayers (x=0.23 and 0.28 with y=0 and 0.005) with aboron concentration in the range of 3x1018-1x1021atoms/cm3 have also been investigated. In SiGeClayers, the active boron concentration was obtained from thestrain compensation. It was also found that the boron atomshave a tendency to locate at substitutional sites morepreferentially compared to carbon. These findings led to anestimation of the Hall scattering factor of the SiGeC layers,which showed good agreement with theoretical calculations. Keywords:Silicon germanium carbon (SiGeC), Epitaxy,Chemical vapor deposition (CVD), Loading effect, Highresolution x-ray diffraction (HRXRD), Hall measurements, Atomicforce microscopy (AFM).
7

Device design and process integration for SiGeC and Si/SOI bipolar transistors

Haralson, Erik January 2004 (has links)
SiGe is a significant enabling technology for therealization of integrated circuits used in high performanceoptical networks and radio frequency applications. In order tocontinue to fulfill the demands for these applications, newmaterials and device structures are needed. This thesis focuseson new materials and their integration into heterojunctionbipolar transistor (HBT) structures as well as using devicesimulations to optimize and better understand the deviceoperation. Specifically, a SiGeC HBT platform was designed,fabricated, and electrically characterized. The platformfeatures a non-selectively grown epitaxial SiGeC base,in situdoped polysilicon emitter, nickel silicide,LOCOS isolation, and a minimum emitter width of 0.4 μm.Alternately, a selective epitaxy growth in an oxide window wasused to form the collector and isolation regions. Thetransistors exhibited cutoff frequency (fT) and maximum frequency of oscillation (fMAX) of 40-80 GHz and 15-45 GHz, respectively.Lateral design rules allowed the investigation of behavior suchas transient enhanced diffusion, leakage current, and theinfluence of parasitics such as base resistance and CBC. The formation of nickel silicide on polysiliconSiGe and SiGeC films was also investigated. The formation ofthe low resistivity monosilicide phase was shown to occur athigher temperatures on SiGeC than on SiGe. The stability of themonosilicide was also shown to improve for SiGeC. Nickelsilicide was then integrated into a SiGeC HBT featuring aselectively grown collector. A novel, fully silicided extrinsicbase contact was demonstrated along with the simultaneousformation of NiSi on thein situdoped polysilicon emitter. High-resolution x-ray diffraction (HRXRD) was used toinvestigate the growth and stability of SiGeC base layers forHBT integration. HRXRD proved to be an effective, fast,non-destructive tool for monitoring carbon out-diffusion due tothe dopant activation anneal for different temperatures as wellas for inline process monitoring of epitaxial growth of SiGeClayers. The stability of the SiGe layer with 0.2-0.4 at% carbonwhen subjected to dopant activation anneals ranging from1020-1100&amp;#176C was analyzed by reciprocal lattice mapping.It was found that as the substitutional carbon increases theformation of boron clusters due to diffusion is suppressed, buta higher density of carbon clusters is formed. Device simulations were performed to optimize the DC and HFperformance of an advanced SiGeC HBT structure with low baseresistance and small dimension emitter widths. The selectivelyimplanted collector (SIC) was studied using a design ofexperiments (DOE) method. For small dimensions the lateralimplantation straggle has a significant influence on the SICprofile (width). A significant influence of the SIC width onthe DC gain was observed. The optimized structure showedbalanced fT/fMAXvalues of 200+ GHz. Finally, SOI BJT transistorswith deep trench isolation were fabricated in a 0.25μmBiCMOS process and self-heating effects were characterized andcompared to transistors on bulk silicon featuring deep trenchand shallow trench isolation. Device simulations based on SEMcross-sections and SIMS data were performed and the resultscompared to the fabricated transistors. Key words:Silicon-Germanium(SiGe), SiGeC,heterojunction bipolar transistor(HBT), nickel silicide,selectively implanted collector(SIC), device simulation, SiGeClayer stability, high resolution x-ray diffraction(HRXRD),silicon-on-insulator(SOI), self-heating.
8

Device design and process integration for SiGeC and Si/SOI bipolar transistors

Haralson, Erik January 2004 (has links)
<p>SiGe is a significant enabling technology for therealization of integrated circuits used in high performanceoptical networks and radio frequency applications. In order tocontinue to fulfill the demands for these applications, newmaterials and device structures are needed. This thesis focuseson new materials and their integration into heterojunctionbipolar transistor (HBT) structures as well as using devicesimulations to optimize and better understand the deviceoperation. Specifically, a SiGeC HBT platform was designed,fabricated, and electrically characterized. The platformfeatures a non-selectively grown epitaxial SiGeC base,<i>in situ</i>doped polysilicon emitter, nickel silicide,LOCOS isolation, and a minimum emitter width of 0.4 μm.Alternately, a selective epitaxy growth in an oxide window wasused to form the collector and isolation regions. Thetransistors exhibited cutoff frequency (f<sub>T</sub>) and maximum frequency of oscillation (f<sub>MAX</sub>) of 40-80 GHz and 15-45 GHz, respectively.Lateral design rules allowed the investigation of behavior suchas transient enhanced diffusion, leakage current, and theinfluence of parasitics such as base resistance and C<sub>BC</sub>. The formation of nickel silicide on polysiliconSiGe and SiGeC films was also investigated. The formation ofthe low resistivity monosilicide phase was shown to occur athigher temperatures on SiGeC than on SiGe. The stability of themonosilicide was also shown to improve for SiGeC. Nickelsilicide was then integrated into a SiGeC HBT featuring aselectively grown collector. A novel, fully silicided extrinsicbase contact was demonstrated along with the simultaneousformation of NiSi on the<i>in situ</i>doped polysilicon emitter.</p><p>High-resolution x-ray diffraction (HRXRD) was used toinvestigate the growth and stability of SiGeC base layers forHBT integration. HRXRD proved to be an effective, fast,non-destructive tool for monitoring carbon out-diffusion due tothe dopant activation anneal for different temperatures as wellas for inline process monitoring of epitaxial growth of SiGeClayers. The stability of the SiGe layer with 0.2-0.4 at% carbonwhen subjected to dopant activation anneals ranging from1020-1100&#176C was analyzed by reciprocal lattice mapping.It was found that as the substitutional carbon increases theformation of boron clusters due to diffusion is suppressed, buta higher density of carbon clusters is formed.</p><p>Device simulations were performed to optimize the DC and HFperformance of an advanced SiGeC HBT structure with low baseresistance and small dimension emitter widths. The selectivelyimplanted collector (SIC) was studied using a design ofexperiments (DOE) method. For small dimensions the lateralimplantation straggle has a significant influence on the SICprofile (width). A significant influence of the SIC width onthe DC gain was observed. The optimized structure showedbalanced f<sub>T</sub>/f<sub>MAX</sub>values of 200+ GHz. Finally, SOI BJT transistorswith deep trench isolation were fabricated in a 0.25μmBiCMOS process and self-heating effects were characterized andcompared to transistors on bulk silicon featuring deep trenchand shallow trench isolation. Device simulations based on SEMcross-sections and SIMS data were performed and the resultscompared to the fabricated transistors.</p><p><b>Key words:</b>Silicon-Germanium(SiGe), SiGeC,heterojunction bipolar transistor(HBT), nickel silicide,selectively implanted collector(SIC), device simulation, SiGeClayer stability, high resolution x-ray diffraction(HRXRD),silicon-on-insulator(SOI), self-heating.</p>
9

Analyse de la densité de charge et des propriétés topologiques des interactions intermoléculaires faibles - liaisons halogène et chalcogène - et leur comparaison avec des liaisons hydrogène / Charge density analysis and topological properties of weak intermolecular interactions ? halogen and chalcogen bonding - and their comparison with hydrogen bonding

Brezgunova, Mariya 06 March 2013 (has links)
La compréhension et le contrôle des interactions intermoléculaires est d'une importance fondamentale dans les domaines de la reconnaissance moléculaire et de l'ingénierie cristalline, ainsi que dans les systèmes biologiques. Parmi les contacts faibles les plus fréquents qui lient les molécules dans les solides organiques nous trouvons la liaison halogène, la liaison chalcogène, et la liaison hydrogène faible. Dans cette thèse, des études expérimentales et théoriques de densité de charge rhô(r) basées sur la méthodologie QTAIM ont été effectuées pour l'analyse des liaisons halogènes et chalcogènes, et pour leur comparaison avec les liaisons hydrogène faibles. Pour ce faire, nous avons réalisé l'affinement multipolaire de la densité électronique obtenue à partir de la diffraction des rayons-X sur monocristal, ainsi qu'à partir des calculs périodiques DFT. A l'issue de nos résultats, nous avons définie la nature de ces interactions faibles (électrophile-nucléophile) et caractérisé leur intensité et directionnalité. Basé sur la topologie de L(r) = ¬rhô delta inversé2 rhô(r), le descripteur électrostatique (delta(L/rhô)) nous a permis d'évaluer quantitativement l'interaction électrostatique entre les régions de concentration (CC) et de dilution (CD) de charge de la couche de valence des atomes. L'énergie d'interaction (Eint) a été décrite à partir de descripteurs topologiques de rhô(r). Nous nous sommes intéressés également à la formation de fragments structuraux récurrents, appelés synthons. Il a été prouvé que le synthon peut être créé non seulement par des groupements d'atomes similaires, mais aussi par des ensembles de sites CC et CD qui sont impliqués de façon similaire dans la formation de contact / Understanding and control of intermolecular interactions play a crucial role in molecular recognition, crystal engineering, and biological systems. Three very frequent weak contacts linking the molecules in organic solids are halogen, chalcogen, and weak hydrogen bondings. In this thesis, we perform experimental and theoretical charge density rho(r) studies based on the QTAIM methodology for analyzing halogen and chalcogen bonding, and for comparing them with weak hydrogen bonding, as derived from the high-resolution single crystal X-ray diffraction multipole-refined electron density and from density functional theory (DFT) calculations. Defining the nature of these weak interactions as electrophilic-nucleophilic, we particularly focus on their strength and directionality. Based on the topology of L(r) = ¬rho inverted delta2 rho(r), a proposed electrostatic descriptor (delta(L/rho)) permitted us to evaluate quantitatively the electrostatic intensity between charge concentration (CC) and charge depletion (CD) regions belonging to the valence shell of the interacting atoms. The interaction energy (Eint) was described from the topological properties of rho(r). The attention has been also paid to the formation of recurrent structural fragments, called synthons. By the developed approach, it is proved that the synthon arrangement can be created not only by groups of atoms, but also by sets of CC and CD sites similarly involved in the contact formation
10

Engineering Multicomponent Nanostructures for MOSFET, Photonic Detector and Hybrid Solar Cell Applications

Jamshidi Zavaraki, Asghar January 2015 (has links)
Silicon technologyhas been seekingfor a monolithic solution for a chip where data processing and data communication is performed in the CMOS part and the photonic component, respectively. Traditionally, silicon has been widely considered for electronic applications but not for photonic applications due to its indirect bandgap nature. However, band structure engineering and manipulation through alloying Si with Ge and Sn has opened new possibilities. Theoretical calculations show that it is possible to achieve direct transitions from Ge ifit is alloyed with Sn. Therefore, a GeSn system is a choice to get a direct bandgap. Extending to ternary GeSnSi and quaternary GeSnSiCstructures grown on Si wafers not only makes the bandgap engineering possible but also allowsgrowing lattice matched systems with different strain and bandgaps located in the infrared region. Different heterostructures can be designed and fabricated for detecting lightas photonic sensing oremitting the light as lasers. Alloying not only makes engineering possible but it also induces strain which plays an important role for electronic applications. Theoretical and experimental works show that tensile strain could increase the mobility, which is promising for electronic devices where high mobility channels for high performance MOSFETs is needed to speed up the switching rate. On the other hand, high n-doping in tensile strains in p-i-n structures makesΓ band transitions most probable which is promising for detection and emission of the light. As another benefit of tensile strain, the direct bandgap part shrinks faster than the indirect one if the strain amount is increased. To get both electronic and photonic applications of GeSn-based structures, two heterostructures (Ge/GeSn(Si)/GeSi/Ge/Si and Ge/GeSn/Si systems), including relaxed and compressive strained layers used to produce tensile strained layers, were designed in this thesis. The low temperature growth is of key importance in this work because the synthesis of GeSn-based hetrostructures on Si wafers requires low thermal conditions due tothe large lattice mismatch which makes them metastable. RPCVD was used to synthesize theseheterostructures because not only it offers a low temperature growth but also because it is compatible with CMOS technology. For utilization of these structures in devices, n-type and p-type doping of relaxed and compressive strained layers were developed. HRRLMs, HRTEM, RBS, SIMS, and FPP techniques were employed to evaluatestrain, quality, Sn content and composition profile of the heterostructures. The application of GeSn-based heterostructures is not restricted to electronics and photonics. Another application investigated in this work is photovoltaics. In competition with Si-based solar cells, which have, or areexpected to have,high stability and efficiency, thirdgeneration solar cells offer the use of low cost materials and production and can therefore be an alternative for future light energy conversion technology. Particularly, quantum dot sensitized solar cells are associated with favorable properties such as high extrinsic coefficients, size dependent bandgaps and multiple exciton generation and with a theoretical efficiencyof 44%. In this work, two categories of QDs, Cd-free and Cd-based QDs were employed as sensitizers in quantum dot sensitized solar cells (QDSSCs). Cd-based QDs have attracted large interest due to high quantum yield,however, toxicityremains still totheir disadvantage. Mn doping as a bandgap engineering tool for Cd-based type IIZnSe/CdS QDs wasemployed to boostthe solar cell efficiency. Theoretical and experimental investigations show that compared to single coreQDSSCs,typeII core-shells offer higher electron-hole separation due to efficient band alignment where the photogenerated electrons and holes are located in the conduction band of the shell and valence band of the core, respectively. This electron-hole separation suppresses recombination and by carefully designing the band alignment in the deviceit can increase the electron injection and consequently the power conversion efficiency of the device. Considering eco-friendly and commercialization aspects, three different “green” colloidal nanostructures having special band alignments, which are compatible for sensitized solar cells, were designed and fabricated by the hot injection method. Cu2GeS3-InP QDs not only can harvest light energy up to the infraredregion but can also be usedastypeII QDs. ZnS-coating was employed as a strategy to passivate the surface of InP QDs from interaction with air and electrolyte. In addition, ZnS-coating and hybrid passivation was applied for CuInS2QDs to eliminate surface traps. / <p>QC 20151125</p>

Page generated in 0.467 seconds