• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Backside observation of large-scale integrated circuits with multilayered interconnections using laser terahertz emission microscope

Yamashita, Masatsugu, Otani, Chiko, Kawase, Kodo, Matsumoto, Toru, Nikawa, Kiyoshi, Kim, Sunmi, Murakami, Hironaru, Tonouchi, Masayoshi 13 May 2009 (has links)
No description available.
2

Femtosecond laser irradiation of synthetic single crystal diamond: studies of surface ripples and ablation thresholds

Brawley-Hayes, Jasper A. 10 1900 (has links)
<p>This thesis explores the ablation and texturing of synthetic single crystal diamond under ultrashort laser pulse irradiation in rough vacuum ambient conditions. Experiments were performed with a 1 kHz repetition rate titanium sapphire laser system producing pulses at 800 nm central wavelength and 150 fs pulse duration. First, the production of ordered periodic nanostructures (ripples) on the diamond surface was characterized and the periodicity of these structures was analyzed against irradiation parameters. Ripples were usually found to fall into one of two categories: one with a spatial period near the irradiation wavelength and one with a spatial period near λ/2n, where λ is the central laser wavelength in air and n is the refractive index of diamond at λ. The spatial periods were plotted against irradiation conditions including the peak fluence, number of incident pulses, and the angle of incidence. Unique outcomes arising out of complex irradiation conditions were also explored. Second, the ablation thresholds for single pulse up to 1000 pulse irradiation were determined using the <em>D</em><sup>2</sup> method at both the fundamental central wavelength (800 nm) and the second harmonic (400 nm). The single 800 nm pulse ablation threshold for synthetic single crystal diamond was determined to be 2.3 J/cm<sup>2</sup> with an incubation coefficient of 0.54. The single 400 nm pulse ablation threshold was determined to be 1.5 J/cm<sup>2</sup> with an incubation coefficient of 0.73.</p> / Master of Applied Science (MASc)

Page generated in 0.0848 seconds