• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 15
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 105
  • 105
  • 105
  • 40
  • 19
  • 17
  • 17
  • 15
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Reduction of hydrogen embrittlement on Electrogalvanized Ultra High Strength Steels

Haglund, Adam January 2014 (has links)
Ultra-high strength steels is known to be susceptible for hydrogen embrittlement at very low concentrations of hydrogen. In this thesis three methods to prevent or reduce the hydrogen embrittlement in martensitic steel, with tensile strength of 1500 MPa, were studied. First, a barrier layer of aluminium designed to prevent hydrogen to enter the steel, which were deposited by vacuum evaporation. Second, a decarburization process of the steels surface designed to mitigate the induced stresses from cutting. Last, a hydrogen relief treatment at 150°C for 11 days and 200°C for 4 days, to reduce the hydrogen concentration in the steel. The effect of the hydrogen embrittlement was analyzed by manual measurements of the elongations after a slow strain rate testing at 5*10-6 mm/s, and the time to fracture in an in-situ constant load test with a current density of 1.92 mA/cm2 in a 0.5 M Na2SO4 solution. The barrier layer showed an increase in time to fracture, but also a decrease in elongations. The decarburized steel had a small increase in the time to fracture, but not enough to make it a feasible process. The hydrogen relief treatment showed a general decrease in hydrogen concentrations, but the elongation measurements was irregular although with a tendency for improvement. The simplicity of the hydrogen relief treatment makes it an interesting process to reduce the influence of hydrogen embrittlement. However, more investigations are necessary.
72

Variaveis de influencia do teste G-BOP / Variables of influence of the G-BOP test

Fraga, Francisco Edson Nogueira 25 July 2005 (has links)
Orientador: Roseana da Exaltação Trevisan / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-05T03:36:29Z (GMT). No. of bitstreams: 1 Fraga_FranciscoEdsonNogueira_M.pdf: 7668507 bytes, checksum: 806c3c771652dfe2aa90373e2fca42ba (MD5) Previous issue date: 2005 / Resumo: Trinca induzida por hidrogênio é um dos defeitos mais graves que ocorrem em juntas soldadas de diversos aços. Esta falha mecânica ocorre com bastante freqüência na zona afetada pelo calor (ZAC) destes materiais. Com o desenvolvimento de novos aços, o risco da ocorrência de trincamento na ZAC tem se reduzido cada vez mais e passado a ocorrer com mais freqüência no metal de solda (MS). O teste G-BOP (Gapped Bead-on-Plate) destaca-se dentre os vários testes autodestrutivos pela grande aplicação em avaliar susceptibilidade de ocorrência de trincas de hidrogênio somente no cordão de solda. As principais vantagens deste teste são: baixo custo quando comparado a outros testes, simplicidade na execução e facilidade em quantificar trincas a frio no MS. Apesar de todas as vantagens, este teste tem sérias limitações e uma delas é o fato de não ser normalizado. Visando contribuir com informações que possam agregar maior confiabilidade e contribuir para a normalização do teste G-BOP, este trabalho teve como objetivo principal estudar de maneira sistemática e científica a influência das principais variáveis do teste G-BOP (dimensão do rebaixo, energia nominal de soldagem e temperatura de preaquecimento) sobre a variável de resposta, que é o percentual de trinca induzida por hidrogênio na seção transversal do metal de solda, As três variáveis foram estudadas segundo uma análise estatística de variância, identificando a influência individual de cada uma e a interação entre elas sobre os resultados do teste. Para o desenvolvimento experimental foi utilizado como material de base um aço ASTM A-285 grau C, como metal de adição, um arame tubular de classificação AWS E71T-1 e o 'CO IND. 2¿ como gás de proteção auxiliar. Para os níveis de cada uma das variáveis analisadas aqui, identificou-se que a energia nominal de soldagem e a temperatura de preaquecimento são variáveis que tem influência significativa sobre os resultados do teste G-BOP e que a variável dimensão do rebaixo não tem influência significativa. Identificou-se ainda que a interação entre estas variáveis também não apresenta influência significativa sobre os resultados do teste / Abstract: Hydrogen induced cracking (HIC) is a serious defect that occurs in welded joints of several steel types. This mechanical failure occurs frequently on the heat affected zone (HAZ). With the development of new steels the probability of HIC occurring on the HAZ has reduced, however it has started to occur on the weld metal (WM). The Gapped bead-on-plate test (G-BOP) stands out from several other self-restraint tests for its great application to evaluate HIC only on the weld metal. The main advantages of this test are: low cost, simple execution and crack quantification on WM. Despite its advantages, this test has a serious limitation that it is not normalized. To contribute to getting information that can add greater trustworthiness to G-BOP test and help to normalize it, the objective of this study is to evaluate the influence of the main variable of the G-BOP test (gap, welding heat and preheat temperature) in the output variable (HIC %). A variance analysis was used to identify the influence of these variables in the test results. For the experimental development the ASTM A-285 grade C steel was used as base metal as well as AWS E71T-1 flux core and 'CO IND. 2¿ shielding. It was concluded that the heat input and the preheat temperature have significant influence in the test result. The gap and the interaction between these variables don't have any influence in the test result / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia de Fabricação
73

Uma metodologia para a avaliação dos gradientes de tenacidade a fratura ao longo da camada cementada do aço SAE 5115 / A model for fracture toughness evaluation of the carburized layer for SAE 5115 steel

Sandor, Leonardo Taborda 28 March 2005 (has links)
Orientador: Itamar Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-04T09:29:09Z (GMT). No. of bitstreams: 1 Sandor_LeonardoTaborda_M.pdf: 9634671 bytes, checksum: 3b7603db85e265d8bd0e3fc244928942 (MD5) Previous issue date: 2005 / Resumo: Este trabalho propõe um modelo para avaliar pontualmente as variações de tenacidade à fratura ao longo da camada cementada de um aço SAE 5115. A pequena espessura dessas camadas impede a retirada de corpos de prova nas dimensões especificadas pelas normas de ensaios de tenacidade à fratura. Assim, para simular uma camada cementada retirou-se corpos de prova de tração e de tenacidade à fratura de amostras de aços SAE 5115, 5140, 5160 e 52100 assumindo a influência local apenas da variação do teor de carbono e considerando que os teores dos demais elementos de liga são essencialmente constantes. Os corpos de prova após eletrodeposição de cobre foram tratados termicamente numa carga industrial de cementação, têmpera e revenimento para serem submetidos aos efeitos térmicos sem absorção de carbono. Os resultados da análise microestrutural, dos ensaios de microdureza, de tração e de tenacidade à fratura foram agrupados em um único gráfico e comparados com o perfil de cementação de peças de aço SAE 5115 tratadas nas mesmas condições. Foi confirmado que a tenacidade à fratura varia inversamente proporcional à microdureza (HV1) e que a previsão do comportamento de uma trinca numa camada cementada pode ser feita por meio de equação ou diagrama que relacionam a miicrodureza HV1 com a tenacidade à fratura (K1c ou CTODc) / Abstract: The purpose of this work is to propose a model for evaluating the fracture toughness along the SAE 5115 steel carburized layer. Due to the small thickness of those layers, it is impossible to machine specimens from those layer in accordance with standards. For simulating the microstructures of the carburized layer in order to get samples for tensile and the fracture toughness testing, specimens of SAE 5115, 5140, 5160, and 52100 steels assuming the local influence just of the variation of the content of carbon and considering that the contents of the other alloy elements are essentially constant. The specimens after electroplated copper layer were heat treated in an industrialload of carburizing, quenching, and tempering for they be submitted to the thermal effects without absorption of carbono The results of the microstructure analysis and microhardness, tension, and fracture toughness tests were placed in a single graph and compared with the profile of the carburizing of the steel SAE 5115 heat treated in the same conditions. It was confirmed that the fracture toughness varies inversely proportional to the microhardness (HV1) and that the forecast of the behavior of a crack in a carburized layer can be made through equation or it designs that relate the microhardness (HV1) with the fracture toughness (KIC or CTODc) / Mestrado / Materiais e Processos de Fabricação / Mestre em Engenharia Mecânica
74

[en] INDUCTION HOT BENDING OF STEEL PIPE API 5L X80 / [pt] CURVAMENTO POR INDUÇÃO DE TUBO DA CLASSE API 5L X80

GILMAR ZACCA BATISTA 12 July 2006 (has links)
[pt] Neste trabalho são apresentados os efeitos do processo de curvamento a quente por indução na microestrutura e nas propriedades mecânicas do tubo API 5L X80, fabricado pelo processo UOE, com chapa produzida através do processo de laminação controlada sem resfriamento acelerado. O curvamento foi realizado com aquecimento localizado, provocado por uma bobina de alta freqüência, seguido de resfriamento por jatos de água. O tubo curvado foi avaliado e comparado com o tubo reto. Adicionalmente, foi realizado um tratamento térmico de revenido em parte da região curvada. Foram realizados ensaios mecânicos de tração, microdureza e impacto Charpy-V, análises dimensionais e avaliação microestrutural. Verificou-se uma alteração significativa na microestrutura da região curvada, resultando em uma curva com menores valores de temperatura de transição e limite de escoamento inferior ao do tubo original e ao requerido por norma. O tratamento térmico aplicado na região curvada, mostrou-se eficiente para elevar o limite de escoamento para valores acima do mínimo especificado pela norma API 5L para o X80. / [en] The present work discusses the effect of the induction bending process on the microstructure and the mechanical properties of an API 5L X80, 20 pipe produced by the UOE process. The key characteristic of the pipe was the manufacturing process of the steel plate, involving thermomechanical controlled rolling without accelerated cooling. The pipe bending was carried out applying local induction heating followed by water quenching and a further temper heat treatment was applied to the curved section. The methodology of analysis compared the curved section with the original body pipe, taking into account dimensional analysis, microstructural evaluation and mechanical tests which included Charpy-V impact, tensile and microhardness. A significant microstructural change and decrease, not only in the transition temperature, but also in the yield strength ocurred after induction bending, this reduction was below the standard requirements. The subsequent tempering heat treatment applied to the curved section produced an increase in the yield strength to achieve the API 5L requirements for this class of steel.
75

Improving fatigue properties of welded high strength steels

Harati, Ebrahim January 2017 (has links)
In recent years a strong interest has been expressed to produce lighter structures.One possible solution to reduce the weight is to utilize high strength steels and use welding as the joining method. Many components experience fatigue loadingduring all or part of their life time and welded connections are often the prime location of fatigue failure. This becomes more critical in welded high strength steels as fatigue strength of welds does not increase by increasing the steel strength. A possible solution to overcome this issue is to use fatigue improvement methods.The main objectives of this project are, therefore, to increase understanding of the factors that control fatigue life and to investigate how the fatigue strength improvement methods; high frequency mechanical impact (HFMI) treatment and use of Low Transformation Temperature (LTT) consumables will affect fatigue properties of welds in high strength steels. In this regard, Gas Metal Arc Welding(GMAW) was used to produce butt and fillet welds using LTT or conventional fillers in steels with yield strengths ranging from 650-1021 MPa and T-joint weldsin a steel with 1300 MPa yield strength. The effect of HFMI on fatigue strength of the welds in 1300 MPa yield strength steels was also investigated. Butt and fillet welds in 650-1021 MPa steels were fatigue tested under constant amplitude tensile loading with a stress ratio of 0.1 while T-joints were fatigue tested under constant amplitude fully reversed bending load with a stress ratio of -1. The nominal stress approach was used for fatigue strength evaluation of butt and fillet welds whereas the effective notch stress approach was used in case of T-joints. Relative effectsof the main parameters such as residual stress and weld toe geometry influencing fatigue strength of welds were evaluated. Residual stresses were measured using X-ray diffraction for as-welded and HFMI treated welds. Neutron diffraction was additionally used to investigate the near surface residual stress distribution in 1300 MPa LTT welds.Results showed that use of LTT consumables increased fatigue strength of welds in steels with yield strengths ranging from 650-1021 MPa. For butt welds, the vii characteristic fatigue strength (FAT) of LTT welds at 2 million cycles was up to46% higher when compared to corresponding welds made with conventional fillermaterials. In fillet welds, a maximum improvement of 132% was achieved when using LTT wires. The increase in fatigue strength was attributed to the lower tensile residual stresses or even compressive stresses produced close to the weldtoe in LTT welds. Weld metals with martensite transformation start temperatures around 200 °C produced the highest fatigue strength. In 1300 MPa yield strength steel, similar FAT of 287 MPa was observed for LTT welds and 306 MPa for conventional welds, both much higher than the IIW FATvalue of 225 MPa. The relative transformation temperatures of the base and weldmetals, specimen geometry and loading type are possible reasons why the fatigue strength was not improved by use of LTT wires. Neutron diffraction showed that the LTT consumable was capable of inducing near surface compressive residual stresses in all directions at the weld toe. It was additionally found that there arevery steep stress gradients both transverse to the weld toe line and in the depth direction, at the weld toe. Due to difficulties to accurately measure residual stresses locally at the weld toe most often in the literature and recommendations residual stresses a few millimetre away from the weld toe are related to fatigue properties. However, this research shows that caution must be used when relating these to fatigue strength, in particular for LTT welds, as stress in the base materiala few millimetre from the weld toe can be very different from the stress locally at the weld toe.HFMI increased the mean fatigue strength of conventional welds in 1300 MPa steels about 26% and of LTT welds by 13%. It increased the weld toe radius slightly but produced a more uniform geometry along the treated weld toes. Large compressive residual stresses, especially in the longitudinal direction, were introduced adjacent to the weld toe for both LTT and conventional treated welds. It was concluded that the increase in fatigue strength by HFMI treatment is due to the combined effect of weld toe geometry modification, increase in surface hardness and introduction of compressive residual stresses in the treated region.It was concluded that the residual stress has a relatively larger influence than the weld toe geometry on fatigue strength of welds. This is based on the observation that a moderate decrease in residual stress of about 15% at the 300 MPa stress level had the same effect on fatigue strength as increasing the weld toe radius by approximately 85% from 1.4 mm to 2.6 mm, in fillet welds. Also, a higher fatigue strength was observed for HFMI treated conventional welds compared to as welded samples having similar weld toe radii but with different residual stresses.
76

Innovative Modular High Performance Lightweight Decks for Accelerated Bridge Construction

Ghasemi, Sahar 13 November 2015 (has links)
At an average age of 42 years, 10% of the nation’s over 607,000 bridges are posted for load restrictions, with an additional 15% considered structurally deficient or functionally obsolete. While there are major concerns with decks in 75% of structurally deficient bridges, often weight and geometry of the deck further limit the load rating and functionality of the bridge. Traditional deck systems and construction methods usually lead to prolonged periods of traffic delays, limiting options for transportation agencies to replace or widen a bridge, especially in urban areas. The purpose of this study was to develop a new generation of ultra-lightweight super shallow solid deck systems to replace open grid steel decks on movable bridges and as well serve as a viable alternative in bridge deck replacements across the country. The study has led to a lightweight low-profile asymmetric waffle deck made with advanced materials. The asymmetry comes from the arrangement of primary and secondary ribs, respectively perpendicular and parallel to the direction of traffic. The waffle deck is made with ultrahigh performance concrete (UHPC) reinforced with either high-strength steel (HSS) or carbon fiber reinforced polymer (CFRP) reinforcement. With this combination, the deck weight was limited to below 21 psf and its overall depth to only 4 inch, while still meeting the strength and ductility demands for 4 ft. typical stringer spacing. It was further envisioned that the ultra-high strength of UHPC is best matched with the high strength of HSS or CFRP reinforcement for an efficient system and the ductile behavior of UHPC can help mask the linear elastic response of CFRP reinforcement and result in an overall ductile system. The issues of consideration from the design and constructability perspectives have included strength and stiffness, bond and development length for the reinforcement, punching shear and panel action. A series of experiments were conducted to help address these issues. Additionally full-size panels were made for testing under heavy vehicle simulator (HVS) at the accelerated pavement testing (APT) facility in Gainesville. Detailed finite element analyses were also carried out to help guide the design of this new generation of bridge decks. The research has confirmed the superior performance of the new deck system and its feasibility.
77

High Performance Steel for Percussive Drilling

Fredriksson, Mikael, Åkerlund, Elin, Åberg, Jakob, Österberg, Patrik, Havo, Rebecka January 2017 (has links)
Atlas Copco Secoroc AB are searching after new bulk materials for drill heads that are used in percussive drilling in order to improve their strength and durability. The aim of this project is to assist Atlas Copco in this search and provide them with further information regarding material properties, alloying elements, suppliers, etc. A literary study was carried out in order to identify materials that had UTS and KIC more than or equal to 1700 MPa and 70 MPa*m^1/2, respectively. Materials that fulfilled these criteria were T250 grade maraging steel, Cobalt free maraging steel, High cobalt maraging steel, 300 grade maraging steel, AerMet 100, AF1410, S53, M54, 300M, 4340M and PremoMet. These were categorized into maraging steels, high alloy secondary hardened steels, and low alloy steels, and were then further researched. The material with the highest combination of UTS and KIC was M54 followed by AerMet 100; while AF1410 had the highest KIC but a low UTS, and PremoMet had the highest UTS but a low KIC. Maraging steels and HASH steels have a similar price range, while low alloy steels are much cheaper.
78

Fatigue life validation of aircraft materials

Ramesh, Aashish, Kalkur, Gaurav January 2020 (has links)
Fatigue is one of the critical design aspects with immense significance where thefatigue life of a material can be stated as the number of cycles that a componentcan withstand under a particular type of loading without failure. The design processhas to include fatigue analysis in order to predict failure due to fatigue. This helpsin maintenance and servicing of a component reducing the chance of failure duringoperation of the component. Increased efficiency of predictive maintenance improvesthe life of the component.This thesis aims to study the relationship between the experimental, analytical andnumerical solutions of two high strength aluminium alloys and one steel alloy fortheir life in aircraft applications covering the effects of geometrical irregularities. Italso aims to answer convergence between the numerical and the analytical methodwhen compared with each other. The simulations are carried out for three materialsamong many used in aircraft and industrial applications (Al 7050-T7451, Al 7075-T6 and AISI 4340 Steel) for a pre-defined set of geometries. The stress field andthe stress concentration factor variations are also studied to identify their effects onfatigue life.The results from this work forms a strong background for the future research alongside SAAB or any other industries using these materials for their structures to findout the failure or predicting it accurately. Also, integral structures can be analysedin detail using this thesis as a base.
79

Hydrogen-assisted stress corrosion cracking of high strength steel / Väte-inducerad spänningskorrosion på höghållfasta stål

Ghasemi, Rohollah January 2011 (has links)
In this work, Slow Strain Rate Test (SSRT) testing, Light Optical Microscopy (LOM) and Scanning Electron Microscopy (SEM) were used to study the effect of micro-structure, corrosive environments and cathodic polarisation on stress corrosion cracking (SCC) of two grades of high strength steels, Type A and Type B. Type A is manufactured by quench and tempered (Q&T) method. Type B, a normalize steel was used as reference. This study also supports electrochemical polarisation resistance method as an effective testing technique for measuring the uniform corrosion rate. SSRT samples were chosen from base metal, weld metal and Heat Affected Zone (HAZ). SSRT tests were performed at room temperature under free corrosion potential and cathodic polarisation using 4 mA/cm2 in 1 wt% and 3.5 wt% NaCl solutions. From the obtained corrosion rate measurements performed in 1 wt% and 3.5 wt% NaCl solutions it was observed that increased chloride concentration and dissolved oxygen content enhanced the uniform corrosion for all tested materials. Moreover, the obtained results from SSRT tests demonstrate that both Q&T and normalized steels were not susceptible to SCC in certain strain rate(1×10-6s-1) in 1 wt% and 3.5 wt% NaCl solutions under free corrosion potential. It was con-firmed by a ductile fracture mode and high reduction in area. The weld metal of Type A with acicular ferrite (AF), pro-eutectoid (PF) and bainite microstructure showed higher susceptibility to hydrogen assisted stress corrosion cracking compared to base metal and HAZ. In addition, typical brittle intergranular cracking with small reduction in area was observed on the fracture surface of the Type A due to hydrogen charging.
80

Feasibility Study of Wind Turbine Blades Constructed in 1300 MPa Fossil-Free Steel : Finite Element weight optimization with respect to structural integrity by Abaqus and Tosca Structure

van der Brug, Peter, Urban, Sina January 2022 (has links)
This study aims to perform a feasibility study on the DTU 10MW-RWT wind turbine blades constructed in the fossil-free high-strength steel 1300 MPa from SSAB. The acceptance criteria, on which the study is based, are taken from the DTU composite wind turbine model. A maximum weight of 41 000kg and a maximum tip displacement of 12.5 m are chosen. By fulfilling the acceptance criteria, the results of this study could contribute to a more sustainable future by decreasing the carbon dioxide emissions of wind turbine blades and improving their  recycling options. To perform weight optimization the Finite Element Analyses software Abaqus and the optimization software Tosca Structure are used.  The study is conducted based on Design for Six Sigma (DFSS) up until the design concept SG2. The study results in a preliminary design of the wind turbine blade constructed in SSAB Strenx 1300 and proofs that Tosca is a suitable software for performing weight optimization. The results show that it would be feasible to replace the wind turbine blades with SSAB Strenx 1300 MPa, but it will result in a weight increase for the current design. For further studies, it is recommended to consult with the stakeholders on how much weight increase of the blade is acceptable and study on how to modify the design of the steel wind turbine blade.

Page generated in 0.0842 seconds