• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generalized Pushover Analysis

Alici, Firat Soner 01 June 2012 (has links) (PDF)
Nonlinear response history analysis is considered as the most accurate analytical tool for estimating seismic response. However, there are several shortcomings in the application of nonlinear response history analysis, resulting from its complexity. Accordingly, simpler approximate nonlinear analysis procedures are preferred in practice. These procedures are called nonlinear static analysis or pushover analysis in general. The recently developed Generalized Pushover Analysis (GPA) is one of them. In this thesis study, GPA is presented and evaluated comparatively with the nonlinear time history analysis and modal pushover analysis. A generalized pushover analysis procedure was developed for estimating the inelastic seismic response of structures under earthquake ground excitations (Sucuoglu and G&uuml / nay, 2011). In this procedure, different load vectors are applied separately to the structure in the incremental form until the predefined seismic demand is obtained for each force vector. These force vectors are named as generalized force vectors. A generalized force vector is a combination of modal forces, and simulates the instantaneous force distribution on the system when a given response parameter reaches its maximum value during the dynamic response. In this method, the maximum interstory drift parameters are selected as target demand parameters and used for the derivation of generalized force vectors. The maximum value of any other response parameter is then obtained from the analysis results of each generalized force vector. In this way, this procedure does do not suffer from the statistical combination of inelastic modal responses. It is further shown in this study that the results obtained by using the mean spectrum of a set of ground motions are almost identical to the mean of the results obtained from separate generalized pushover analyses under each ground motion in the set. These results are also very close to the mean results of nonlinear response history analyses. A practical implementation of the proposed generalized pushover analysis is also developed in this thesis study where the number of pushovers is reduced in view of the number of significant modes contributing to seismic response. It has been demonstrated that the reduced generalized pushover analysis is equally successful in estimating maximum member deformations and member forces as the full GPA under a ground excitation, and sufficiently accurate with reference to nonlinear response history analysis.
2

Design of Controlled Rocking Steel Frames to Limit Higher Mode Effects

Andree Wiebe, Lydell Deighton 14 January 2014 (has links)
Because conventional seismic force resisting systems rely on yielding of key structural members to limit seismic forces, structural damage is expected after a design-level earthquake. Repairing this damage can be very expensive, if it is possible at all. Researchers have been developing a new family of self-centring systems that avoid structural damage. One such system is a controlled rocking steel frame, which is the subject of this thesis. In a controlled rocking steel frame, the columns of a frame are permitted to uplift from the foundation, and the response is controlled by using a combination of post-tensioning and energy dissipation. Although previous studies have confirmed the viability of this system, they have also shown that rocking does not fully limit the peak seismic forces because of higher mode effects. If a structure is designed to account for these effects, it may be uneconomical, but if it is not designed to account for them, it may be unsafe. The purpose of this thesis is to develop recommendations for the design of controlled rocking steel frames, particularly with regard to higher mode effects. A theoretical framework for understanding higher mode effects is developed, and large-scale shake table testing is used to study the behaviour of a controlled rocking steel frame. Two mechanisms are proposed to mitigate the increase in structural forces due to higher mode effects, and these mechanisms are validated by shake table testing. Numerical modelling of controlled rocking steel frames is shown to become more reliable when higher mode mitigation mechanisms are used to limit the seismic response. In the final chapters, the thesis proposes and validates a new methodology for the limit states design of controlled rocking steel frames.
3

Design of Controlled Rocking Steel Frames to Limit Higher Mode Effects

Andree Wiebe, Lydell Deighton 14 January 2014 (has links)
Because conventional seismic force resisting systems rely on yielding of key structural members to limit seismic forces, structural damage is expected after a design-level earthquake. Repairing this damage can be very expensive, if it is possible at all. Researchers have been developing a new family of self-centring systems that avoid structural damage. One such system is a controlled rocking steel frame, which is the subject of this thesis. In a controlled rocking steel frame, the columns of a frame are permitted to uplift from the foundation, and the response is controlled by using a combination of post-tensioning and energy dissipation. Although previous studies have confirmed the viability of this system, they have also shown that rocking does not fully limit the peak seismic forces because of higher mode effects. If a structure is designed to account for these effects, it may be uneconomical, but if it is not designed to account for them, it may be unsafe. The purpose of this thesis is to develop recommendations for the design of controlled rocking steel frames, particularly with regard to higher mode effects. A theoretical framework for understanding higher mode effects is developed, and large-scale shake table testing is used to study the behaviour of a controlled rocking steel frame. Two mechanisms are proposed to mitigate the increase in structural forces due to higher mode effects, and these mechanisms are validated by shake table testing. Numerical modelling of controlled rocking steel frames is shown to become more reliable when higher mode mitigation mechanisms are used to limit the seismic response. In the final chapters, the thesis proposes and validates a new methodology for the limit states design of controlled rocking steel frames.
4

Parametric Study and Higher Mode Response Quantification of Steel Self-Centering Concentrically-Braced Frames

Hasan, M. R. 18 December 2012 (has links)
No description available.
5

Parametric Study of Seismic-Resistant Friction-Damped Braced Frame System

Blebo, Felix C. 19 September 2013 (has links)
No description available.
6

Ultimate Limit States in Controlled Rocking Steel Braced Frames

Steele, Taylor Cameron January 2019 (has links)
The Insurance Bureau of Canada released a report in 2013 that evaluated the seismic risk of two major metropolitan areas of Canada, with projected losses of $75bn in British Columbia along the Cascadia subduction zone, and $63bn in the east through the Ottawa-Montreal-Quebec corridor. Such reports should prompt researchers and designers alike to rethink the way that seismic design is approached in Canada to develop resilient and sustainable cities for the future. To mitigate the economic losses associated with earthquake damage to buildings in seismically active areas, controlled rocking steel braced frames have been developed as a seismically resilient low-damage lateral-force resisting system. Controlled rocking steel braced frames (CRSBFs) mitigate structural damage during earthquakes through a controlled rocking mechanism, where energy dissipation can be provided at the base of the frame, and pre-stressed tendons pull the frame back to its centred position after rocking. The result is a building for which the residual drifts of the system after an earthquake are essentially zero, and the energy dissipation does not result from structural damage. Design methods for the base rocking joint and the capacity-protected frame members in CRSBFs have been proposed and validated both numerically and experimentally. However, the is no consensus on how to approach the design of the frame members, questions remain regarding how best to design CRSBFs to prevent building collapse, and no experimental work has been done regarding how to connect the CRSBF to the rest of the structure to accommodate the rocking motion. Because the force limiting mechanism of a CRSBF is rocking only at the base of the frame, the frame member forces are greatly influenced by the higher-mode response, resulting in more complex methods to design the frame members. This thesis begins by outlining two new design procedures for the frame members in controlled rocking steel braced frames that target both simplicity and accuracy. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static procedure that does not require any modifications to the elastic frame model, instead using theory-based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration to estimate the forces at the target intensity. The base rocking joint design is generally in good agreement between the various research programs pioneering the development of the CRSBFs. However, the numerous parameters available to select during the design of the base rocking joint give designers an exceptional amount of control over the performance of the system, and little research is available on how best to select these parameters to target or minimise the probability of collapse for the building. This thesis presents a detailed numerical model to capture collapse of buildings with CRSBFs as their primary lateral force resisting system and uses this model to generate collapse fragility curves for different base rocking joint design parameters. The parameters include the response modification factor, the hysteretic energy dissipation ratio, and the post-tensioning prestress ratio. This work demonstrates that CRSBFs are resilient against collapse, as designing the base rocking joint with response modification factors as large as 30, designing the post-tensioning to prevent yielding at moderate seismic hazard levels, and using zero energy dissipation could lead to designs with acceptable margins of safety against collapse. While the design procedures are shown to be accurate for estimating the frame member force demand for the targeted intensity level, there is still a high level of uncertainty around what intensity of earthquake a building will experience during its lifespan, and there is no consensus on what intensity should be targeted for design. To address this, the ability of the capacity design procedures to provide a sufficiently low probability of collapse due to excessive frame member buckling and yielding is evaluated and compared to the probability that the building will collapse due to excessive rocking of the frame. The results of the research presented here suggest that the probability of collapse due to either frame member failure or excessive rocking should be evaluated separately, and that targeting the intensity with a 10% probability of exceedance in 50 years is sufficient for the design of the frame members. Finally, critical to the implementation of CRSBFs in practice is how they may be connected to the rest of the structure to accommodate the uplifting of the CRSBF while rocking under large lateral forces. An experimental program was undertaken to test three proposed connection details to accommodate the relative uplifts and forces. The connections that accommodate the uplifts through sliding performed better than that which accommodated the uplifts though material yielding, but the best way to transfer the forces and accommodate the uplifting without influencing the overall behaviour of the system is to position the connection such that it does not need to undergo large uplifts and carry lateral force simultaneously. A detailed numerical model of the experimental setup is presented and is shown to simulate the important response quantities for each of the tested connections. Using the results of this work, designers worldwide will be confident to design CRSBFs for structures from the base rocking joint to the selection of floor-to-frame connections for a complete system design while ensuring a safe and resilient building structure for public use and well-being. / Thesis / Doctor of Philosophy (PhD) / Traditional approaches to seismic design of buildings have generally been successful at preventing collapse and protecting the lives of the occupants. However, the buildings are often left severely damaged, often beyond repair. To address these concerns, controlled rocking steel braced frames have been proposed as part of a new construction technique to mitigate or prevent damage to steel buildings during earthquakes, but several aspects of the design and overall safety have yet to be explored or demonstrated. This thesis proposes and validates new tools to design controlled rocking steel braced frames and provides recommendations on how best to design them to achieve a safe probability against collapse. Details are proposed and presented for components to connect the controlled rocking steel braced frames into the rest of the structure. The findings of this thesis will aid practitioners looking to deliver resilient and sustainable structural designs for buildings in our cities of the future.

Page generated in 0.0937 seconds