• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
12

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. 24 January 2011 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
13

Reasoning Using Higher-Order Abstract Syntax in a Higher-Order Logic Proof Environment: Improvements to Hybrid and a Case Study

Martin, Alan J. January 2010 (has links)
We present a series of improvements to the Hybrid system, a formal theory implemented in Isabelle/HOL to support specifying and reasoning about formal systems using higher-order abstract syntax (HOAS). We modify Hybrid's type of terms, which is built definitionally in terms of de Bruijn indices, to exclude at the type level terms with `dangling' indices. We strengthen the injectivity property for Hybrid's variable-binding operator, and develop rules for compositional proof of its side condition, avoiding conversion from HOAS to de Bruijn indices. We prove representational adequacy of Hybrid (with these improvements) for a lambda-calculus-like subset of Isabelle/HOL syntax, at the level of set-theoretic semantics and without unfolding Hybrid's definition in terms of de Bruijn indices. In further work, we prove an induction principle that maintains some of the benefits of HOAS even for open terms. We also present a case study of the formalization in Hybrid of a small programming language, Mini-ML with mutable references, including its operational semantics and a type-safety property. This is the largest case study in Hybrid to date, and the first to formalize a language with mutable references. We compare four variants of this formalization based on the two-level approach adopted by Felty and Momigliano in other recent work on Hybrid, with various specification logics (SLs), including substructural logics, formalized in Isabelle/HOL and used in turn to encode judgments of the object language. We also compare these with a variant that does not use an intermediate SL layer. In the course of the case study, we explore and develop new proof techniques, particularly in connection with context invariants and induction on SL statements.
14

Extending higher-order logic with predicate subtyping : application to PVS / Extension de la logique d'ordre supérieur avec le sous-typage par prédicats : application à PVS

Gilbert, Frédéric 10 April 2018 (has links)
Le système de types de la logique d'ordre supérieur permet d'exclure certaines expressions indésirables telles que l'application d'un prédicat à lui-même. Cependant, il ne suffit pas pour vérifier des critères plus complexes comme l'absence de divisions par zéro. Cette thèse est consacrée à l’étude d’une extension de la logique d’ordre supérieur appelée sous-typage par prédicats (predicate subtyping), dont l'objet est de rendre l'attribution de types aussi expressive que l'attribution de prédicats. A partir d'un type A et d'un prédicat P(x) de domaine A, le sous-typage par prédicats permet de construire un sous-type de A, noté {x : A | P(x)}, dont les éléments sont les termes t de type A tels que P(t) est démontrable. Le sous-typage par prédicats est au coeur du système PVS.Ce travail présente la formalisation d'un système minimal incluant le sous-typage par prédicats, appelé PVS-Core, ainsi qu'un système de certificats vérifiables pour PVS-Core. Ce deuxième système, appelé PVS-Cert, repose sur l'introduction de termes de preuves et de coercions explicites. PVS-Core et PVS-Cert sont munis d'une notion de conversion correspondant respectivement à l'égalité modulo beta et à l'égalité modulo beta et effacement des coercions, choisi pour établir une correspondance simple entre les deux systèmes.La construction de PVS-Cert est semblable à celle des PTS (Pure Type Systems) avec paires dépendantes et PVS-Cert peut être muni de la notion de beta-sigma-réduction utilisée au coeur de ces systèmes. L'un des principaux théorèmes démontré dans ce travail est la normalisation forte de la réduction sous-jacente à la conversion et de la beta-sigma-réduction. Ce théorème permet d'une part de construire un algorithme de vérification du typage (et des preuves) pour PVS-Cert et d'autre part de démontrer un résultat d'élimination des coupures, utilisé à son tour pour prouver plusieurs propriétés importantes des deux systèmes étudiés. Par ailleurs, il est également démontré que PVS-Cert est une extension conservative du PTS lambda-HOL, et qu'en conséquence PVS-Core est une extension conservative de la logique d'ordre supérieur.Une deuxième partie présente le prototype d'une instrumentation de PVS pour produire des certificats de preuve. Une troisième et dernière partie est consacrée à l'étude de liens entre logique classique et constructive avec la définition d'une traduction par double négation minimale ainsi que la présentation d'un algorithme de constructivisation automatique des preuves. / The type system of higher-order logic allows to exclude some unexpected expressions such as the application of a predicate to itself. However, it is not sufficient to verify more complex criteria such as the absence of divisions by zero. This thesis is dedicated to the study of an extension of higher-order logic, named predicate subtyping, whose purpose is to make the assignment of types as expressive as the assignment of predicates. Starting from a type A and a predicate P(x) of domain A, predicate subtyping allows to build a subtype of A, denoted {x : A | P(x)}, whose elements are the terms t of type A such that P(t) is provable. Predicate subtyping is at the heart of the proof system PVS.This work presents the formalization of a minimal system expressing predicate subtyping, named PVS-Core, as well as a system of verifiable certificates for PVS-Core. This second system, named PVS-Cert, is based on the introduction of proof terms and explicit coercions. PVS-Core and PVS-Cert are equipped with a notion of conversion corresponding respectively to equality modulo beta and to equality modulo beta and the erasure of coercions, chosen to establish a simple correspondence between the two systems.The construction of PVS-Cert is similar to that of PTSs (Pure Type Systems) with dependent pairs and PVS-Cert can be equipped with the notion of beta-sigma-reduction used at the core of these systems. One of the main theorems proved in this work is the strong normalization of both the reduction underlying the conversion and beta-sigma-reduction. This theorem allows, on the one hand, to build a type-checking (and proof-checking) algorithm for PVS-Cert and, on the other hand, to prove a cut elimination result, used in turn to prove important properties of the two studied systems. Furthermore, it is also proved that PVS-Cert is a conservative extension of the PTS lambda-HOL and that, as a consequence, PVS-Core is a conservative extension of higher-order logic.A second part presents the prototype of an instrumentation of PVS to generate proof certificates. A third and final part is dedicated to the study of links between classical and constructive logic, with the definition of a minimal double-negation translation as well as the presentation of an automated proof constructivization algorithm.
15

English Coordination in Linear Categorial Grammar

Worth, Andrew Christopher 08 June 2016 (has links)
No description available.
16

Provably Sound and Secure Automatic Proving and Generation of Verification Conditions / Tillförlitligt sund och säker automatisk generering och bevisning av verifieringsvillkor

Lundberg, Didrik January 2018 (has links)
Formal verification of programs can be done with the aid of an interactive theorem prover. The program to be verified is represented in an intermediate language representation inside the interactive theorem prover, after which statements and their proofs can be constructed. This is a process that can be automated to a high degree. This thesis presents a proof procedure to efficiently generate a theorem stating the weakest precondition for a program to terminate successfully in a state upon which a certain postcondition is placed. Specifically, the Poly/ML implementation of the SML metalanguage is used to generate a theorem in the HOL4 interactive theorem prover regarding the properties of a program written in BIR, an abstract intermediate representation of machine code used in the PROSPER project. / Bevis av säkerhetsegenskaper hos program genom formell verifiering kan göras med hjälp av interaktiva teorembevisare. Det program som skall verifieras representeras i en mellanliggande språkrepresentation inuti den interaktiva teorembevisaren, varefter påståenden kan konstrueras, som sedan bevisas. Detta är en process som kan automatiseras i hög grad. Här presenterar vi en metod för att effektivt skapa och bevisa ett teorem som visar sundheten hos den svagaste förutsättningen för att ett program avslutas framgångsrikt under ett givet postvillkor. Specifikt använder vi Poly/ML-implementationen av SML för att generera ett teorem i den interaktiva teorembevisaren HOL4 som beskriver egenskaper hos ett program i BIR, en abstrakt mellanrepresentation av maskinkod som används i PROSPER-projektet.

Page generated in 0.0995 seconds