1 |
A Transportation Planning Model for State Highway Management: A Decision Support System Methodology to Achieve Sustainable DevelopmentKim, Kyeil 19 February 1998 (has links)
The realization that the U.S. infrastructure is deteriorating and that there is a need to establish a strategy to prevent an infrastructure catastrophe have propelled the development of various infrastructure management systems. Often, the expansion of transportation facilities is regarded as a means to the improvement of the condition of transportation infrastructure. However, building more infrastructure than can be properly maintained causes serious deterioration of the existing infrastructure. Sustainable development from a highway management perspective can be equated with qualitative development, which improves the current condition of the highway system, rather than expanding its physical resources.
The objective of this research is to develop a highway management strategy to help achieve sustainable development for the Commonwealth of Virginia. This research is performed by developing a transportation planning model for state highway management (TPMSHM) within the framework of a decision support system (DSS). The planning model consists of ten subsystems, including pavement and bridge management subsystems. These subsystems encompass various socioeconomic parameters that influence the physical status of highways. In the dynamic simulation model, these parameters are expressed in causal relationships using a system dynamics methodology. The types of trajectories for highway conditions that lead to sustainable development are provided.
This research proposes a state-dependent prioritization strategy for calculating efficient budget shares by hierarchical levels of highway conditions. In this strategy, the proportions of the highway budget allocated to each level of management activity are determined by the physical conditions of the highways. Highways in the worst condition are given the first priority to receive the budget allocations. The model also addresses the policy of raising fuels tax to increase the state's transportation revenue. The adverse impact of a fuels tax increase is discussed in terms of revenue, the physical sufficiency of highways, and user benefits.
The TPMSHM constitutes a leading component of the DSS and governs the building processes of other two components, which include a Data Base and a Display Base. A Data Base is constructed by listing all the parameters needed by the TPMSHM within a frame designed in terms of the records and fields of the parameters. A Display Base is demonstrated in a possible form using system dynamics' Powersim software. The graphical capability of representing the simulation results and the interactive user interface inherent in the software are examined.
The emphasis of this research is placed on the development of the TPMSHM, which strives to manage the physical condition of the state highway system at an acceptable level through a state-dependent prioritization strategy to achieve sustainable development. / Ph. D.
|
2 |
Improved road design for future maintenance : analysis of road barrier repair costsKarim, Hawzheen January 2008 (has links)
<p>The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects.</p><p>This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance.</p><p>The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design.</p><p>An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a</p><p>review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified.</p><p>Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types.</p>
|
3 |
Improved Road Design for Future Maintenance - Analysis of Road Barrier Repair CostsKarim, Hawzheen January 2008 (has links)
The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance. The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design. An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified. Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types.
|
4 |
Improved road design for future maintenance : analysis of road barrier repair costsKarim, Hawzheen January 2008 (has links)
The cost of a road construction over its service life is a function of the design, quality of construction, maintenance strategies and maintenance operations. Unfortunately, designers often neglect a very important aspect which is the possibility to perform future maintenance activities. The focus is mainly on other aspects such as investment costs, traffic safety, aesthetic appearance, regional development and environmental effects. This licentiate thesis is a part of a Ph.D. project entitled “Road Design for lower maintenance costs” that aims to examine how the life-cycle costs can be optimized by selection of appropriate geometrical designs for the roads and their components. The result is expected to give a basis for a new method used in the road planning and design process using life-cycle cost analysis with particular emphasis on road maintenance. The project started with a review of literature with the intention to study conditions causing increased needs for road maintenance, the efforts made by the road authorities to satisfy those needs and the improvement potential by consideration of maintenance aspects during planning and design. An investigation was carried out to identify the problems which obstruct due consideration of maintenance aspects during the road planning and design process. This investigation focused mainly on the road planning and design process at the Swedish Road Administration. However, the road planning and design process in Denmark, Finland and Norway were also roughly evaluated to gain a broader knowledge about the research subject. The investigation was carried out in two phases: data collection and data analysis. Data was collected by semi-structured interviews with expert actors involved in planning, design and maintenance and by a review of design-related documents. Data analyses were carried out using a method called “Change Analysis”. This investigation revealed a complex combination of problems which result in inadequate consideration of maintenance aspects. Several urgent needs for changes to eliminate these problems were identified. Another study was carried out to develop a model for calculation of the repair costs for damages of different road barrier types and to analyse how factors such as road type, speed limits, barrier types, barrier placement, type of road section, alignment and seasonal effects affect the barrier damages and the associated repair costs. This study was carried out using a method called the “Case Study Research Method”. Data was collected from 1087 barrier repairs in two regional offices of the Swedish Road Administration, the Central Region and the Western Region. A table was established for both regions containing the repair cost per vehicle kilometre for different combinations of barrier types, road types and speed limits. This table can be used by the designers in the calculation of the life-cycle costs for different road barrier types. / QC 20101112
|
Page generated in 0.0556 seconds