681 |
Brain region gene expression responds discretely to chronic alcohol withdrawal with specific disruption of the hippocampus during intoxicationBerman, Ari Ethan 28 August 2008 (has links)
Not available / text
|
682 |
Temporal deregulation of genes and microRNAs in neurons during prion-induced neurodegenerationMajer, Anna 18 June 2010 (has links)
Prion diseases are fatal and incurable neurodegenerative diseases that share many pathological similarities to other neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease. One of the earliest pathological signs commonly detected in all of these diseases is the dysfunction followed by loss of neuronal synapses, spines and eventually dendrites that collectively contribute to disruption of normal brain function. These pathologies tend to progressively accumulate within the brain tissue such that extensive damage typically precedes clinical symptom manifestation and ultimate death of neurons. Clearly, understanding the molecular processes responsible for these pathologies could uncover critical pathway(s) that are responsible for propagating this brain damage and could therefore be exploited for therapy development. However, molecular mechanisms implicated in this early pathology remain unidentified. To address this gap in knowledge, this thesis describes a transcriptional approach coupled with specific isolation of neuronal-enriched tissue which was used to help delineate cellular pathways involved in prion-induced neurodegeneration. Profiling cell bodies of CA1 hippocampal neurons known to be affected during early prion disease revealed temporal alteration in both gene and microRNA (gene regulators) expression throughout disease. On a gene expression level, changes in transcript expression during preclinical disease were reminiscent of an activity-dependent neuroprotective gene signature previously described in the literature. These neuroprotective genes were induced during preclinical disease, diminished as disease progressed and were abolished at clinical disease. In support of this process, upregulation of the phosphorylated form of the neuroprotective transcription factor CREB was detected during preclinical disease in these neurons. Furthermore, several genes known to be induced by CREB were also upregulated at preclinical disease in prion-infected mice. Interestingly, expression of numerous deregulated microRNAs paralleled the neuroprotective gene signature of which several are known to remodel neuronal spines and dendrites. To determine whether other preclinically induced microRNAs were also capable of remodeling neuronal structures, gain-of-function studies were performed in primary mouse hippocampal neurons for the uncharacterized miR-26a-5p. Neurons over-expressing miR-26a-5p had enhanced spine density and dendrite arborization, similar to other preclinically-induced microRNAs. Together, these data suggests that CA1 hippocampal neurons induce a neuroprotective transcriptional signature that is evident early in the course of disease within CA1 hippocampal neurons and is abolished by clinical disease. Reestablishment of key molecules that can induce this neuroprotective signature at a time when these genes begin to dissipate could prolong prion disease onset and delay clinical symptom manifestation. / October 2015
|
683 |
Persistent and transient Na⁺ currents in hippocampal CA1 pyramidal neuronsPark, Yul Young 13 October 2011 (has links)
The biophysical properties and distribution of voltage gated ion channels shape the spatio-temporal pattern of synaptic inputs and determine the input-output properties of the neuron. Of the various voltage-gated ion channels, persistent Na⁺ current (INaP) is of interest because of its activation near rest, slow inactivation kinetics, and consequent effects on excitability. Overshadowed by transient Na⁺ current (INaT) of large amplitude and fast inactivation, various quantitative characterizations of INaP have yet to provide a clear understanding of their role in neuronal excitability. We addressed this question using quantitative electrophysiology to compare somatic INaP and INaT in 4–7 week old Sprague-Dawley rat hippocampal CA1 pyramidal neurons. INaP was evoked with 0.4 mV/ms ramp voltage commands and INaT with step commands in hippocampal neurons from in vitro brain slices utilizing nucleated patch-clamp recording. INaP was found to have a density of 1.4 ± 0.7 pA/pF in the soma. Compared to INaT, it has a much smaller amplitude (2.38% of INaT) and distinct voltage dependence of activation (16.7 mV lower half maximal activation voltage and 41.3% smaller slope factor than those of INaT). The quantitative measurement of INaT gave the activation time constant ([tau]m) of 22.2 ± 2.3 [mu]s at 40 mV. Hexanol, which has anesthetic effects, was shown to preferentially block INaP compared to INaT with a significant voltage threshold elevation (4.6 ± 0.7 mV) and delayed 1st spike latency (221 ± 54.6 ms) suggesting reduced neuronal excitability. The number of spikes evoked by either given step current injections or [alpha]-EPSP integration was also significantly decreased. The differential blocking of INaP by halothane, a popularly used volatile anesthetic, further supports the critical role of INaP in setting voltage threshold. Taken together, the presence of INaP in the soma demonstrates an intrinsic mechanism utilized by hippocampal CA1 pyramidal neurons to regulate axonal spike initiation through different biophysical properties of the Na⁺ channel. Furthermore, INaP becomes an interesting target of intrinsic plasticity because of its profound effect on the input-output function of the neuron. / text
|
684 |
Modeling inhibition-mediated neural dynamics in the rodent spatial navigation systemLyttle, David Nolan January 2013 (has links)
The work presented in this dissertation focuses on the use of computational and mathematical models to investigate how mammalian brains construct and maintain stable representations of space and location. Recordings of the activities of cells in the hippocampus and entorhinal cortex have provided strong, direct evidence that these cells and brain areas are involved in generating internal representations of the location of an animal in space. The emphasis of the first two portions of the dissertation are on understanding the factors that influence the scale and stability of these representations, both of which are important for accurate spatial navigation. In addition, it is argued in both cases that many of the computations observed in these systems emerge at least in part as a consequence of a particular type of network structure, where excitatory neurons are driven by external sources, and then mutually inhibit each other via interactions mediated by inhibitory cells. The first contribution of this thesis, which is described in chapter 2, is an investigation into the origin of the change in the scale of spatial representations across the dorsoventral axis of the hippocampus. Here it will be argued that this change in scale is due to increased processing of nonspatial information, rather than a dorsoventral change in the scale of the spatially-modulated inputs to this structure. Chapter 3 explores the factors influencing the dynamical stability of class of pattern-forming networks known as continuous attractor networks, which have been used to model various components of the spatial navigation systems, including head direction cells, place cells, and grid cells. Here it will be shown that network architecture, the amount of input drive, and the timescales at which cells interact all influence the stability of the patterns formed by these networks. Finally, in chapter 4, a new technique for analyzing neural data is introduced. This technique is a spike train similarity measure designed to compare spike trains on the basis of shared inhibition and bursts.
|
685 |
The Role of PSD-95 and Kinase Interactions in Synaptic TransmissionAkad, S. Derya 18 April 2013 (has links)
No description available.
|
686 |
The Dentate Gyrus of the Hippocampus: Roles of Transforming Growth Factor beta1 (TGFbeta1) and Adult Neurogenesis in the Expression of Spatial MemoryMartinez-Canabal, Alonso 08 August 2013 (has links)
The dentate gyrus is a region that hosts most of the hippocampal cells in mammals. Nevertheless, its role in spatial memory remains poorly understood, especially in light of the recently-studied phenomenon of adult hippocampal neurogenesis and its possible role in aging and chronic brain disease. We found that chronic over-expression of transforming growth factor beta1 (TGFbeta1), a cytokine involved in neurodegenerative disease, results in several modifications of brain structure, including volumetric changes and persistent astrogliosis. Furthermore, TGFbeta1 over-expression affects the generation of new neurons, leading to an increased number of neurons in the dentate gyrus and deficits in spatial memory acquisition and storage in aged mice. Nonetheless, reducing neurogenesis via pharmacological treatment impairs spatial memory in juvenile mice but not in adult or aged mice. This suggests that the addition of new cells to hippocampal circuitry, and not the increased plasticity of these cells, is the most relevant role of neurogenesis in spatial memory. We tested this idea by modifying proliferation in the dentate gyrus at several ages using multiple techniques and evaluating the incorporation of newborn neurons into hippocampal circuitry. We found that all granule neurons, recently generated or not, have the same probability of being incorporated. Therefore, the number of new neurons participating in memory circuits is proportional to their availability. Our conclusion is that adult-generated cells have the same functional relevance as those generated during development. Together, our data show that the dentate gyrus is important for memory processing and that adult neurogenesis may be relevant to its functionality by optimizing the number of neurons for memory processing. The equilibrium between neurogenesis and optimal dentate gyrus size is disrupted when TGFbeta1 is chronically increased, which occurs in neurodegenerative pathologies, leading to cognitive impairment in aged animals.
|
687 |
Adult Hippocampal Neurogenesis and Memory EnhancementStone, Scellig S. D. 31 August 2012 (has links)
Hippocampal neurogenesis continues throughout life in mammals. These adult-generated dentate granule cells (DGCs) are generally believed to contribute to hippocampal memory processing and are generated at varying rates in response to neuronal network activity. Deep brain stimulation (DBS) allows clinicians to influence brain activity for therapeutic purposes and raises the possibility of targeted modulation of adult hippocampal neurogenesis. It has recently been shown that DBS may ameliorate cognitive decline associated with Alzheimer’s disease (AD), and while underlying mechanisms are unknown, one possibility is activity-dependent regulation of hippocampal neurogenesis. To this end, whether or not adult-generated DGCs can assume functional roles of developmentally-generated neurons, and stimulation-induced enhanced neurogenesis can benefit memory function in the normal and diseased brain, warrant study. First, we examined separate cohorts of developmentally- and adult-generated DGCs in intact mice and demonstrated similar rates of activation during hippocampus-dependent spatial memory processing, suggesting functional equivalence. Second, we examined the neurogenic and cognitive effects of targeted entorhinal cortex (EC) stimulation in mice using parameters analogous to clinical high frequency DBS. Stimulation increased the generation of DGCs. Moreover, stimulation-induced neurons were functionally recruited by hippocampal spatial memory processing in a cell age-dependent fashion that is consistent with DGC maturation. Importantly, stimulation facilitated spatial memory in the same maturation-dependent manner, and not when stimulation-induced promotion of adult neurogenesis was blocked, suggesting a causal relationship. Finally, we are in the process of testing whether similar stimulation facilitates spatial memory in a transgenic (Tg) disease model of AD that exhibits amyloid neuropathology and cognitive impairment. Preliminary results suggest stimulation promotes neurogenesis and rescues impaired spatial memory in Tg animals. When considered in the context of promising clinical results, this body of work suggests stimulation-induced neurogenesis could provide a novel therapeutic modality in settings where functional hippocampal regenerative therapy is desirable.
|
688 |
Adult Hippocampal Neurogenesis and Memory EnhancementStone, Scellig S. D. 31 August 2012 (has links)
Hippocampal neurogenesis continues throughout life in mammals. These adult-generated dentate granule cells (DGCs) are generally believed to contribute to hippocampal memory processing and are generated at varying rates in response to neuronal network activity. Deep brain stimulation (DBS) allows clinicians to influence brain activity for therapeutic purposes and raises the possibility of targeted modulation of adult hippocampal neurogenesis. It has recently been shown that DBS may ameliorate cognitive decline associated with Alzheimer’s disease (AD), and while underlying mechanisms are unknown, one possibility is activity-dependent regulation of hippocampal neurogenesis. To this end, whether or not adult-generated DGCs can assume functional roles of developmentally-generated neurons, and stimulation-induced enhanced neurogenesis can benefit memory function in the normal and diseased brain, warrant study. First, we examined separate cohorts of developmentally- and adult-generated DGCs in intact mice and demonstrated similar rates of activation during hippocampus-dependent spatial memory processing, suggesting functional equivalence. Second, we examined the neurogenic and cognitive effects of targeted entorhinal cortex (EC) stimulation in mice using parameters analogous to clinical high frequency DBS. Stimulation increased the generation of DGCs. Moreover, stimulation-induced neurons were functionally recruited by hippocampal spatial memory processing in a cell age-dependent fashion that is consistent with DGC maturation. Importantly, stimulation facilitated spatial memory in the same maturation-dependent manner, and not when stimulation-induced promotion of adult neurogenesis was blocked, suggesting a causal relationship. Finally, we are in the process of testing whether similar stimulation facilitates spatial memory in a transgenic (Tg) disease model of AD that exhibits amyloid neuropathology and cognitive impairment. Preliminary results suggest stimulation promotes neurogenesis and rescues impaired spatial memory in Tg animals. When considered in the context of promising clinical results, this body of work suggests stimulation-induced neurogenesis could provide a novel therapeutic modality in settings where functional hippocampal regenerative therapy is desirable.
|
689 |
The aging hippocampus : a multilevel analysis in the ratDriscoll, Ira, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
The purpose of the current thesis was twofold: (1) to examine various factors that might be contributing to age-related learning and memory deficits specifically related to the hippocampus, and (2) to validate our rat model of aging, employing a multilevel analysis. We found age-related deficits on both spatial and non-spatial hippocampus-dependent taks that were accompanied by structural alterations observed in vivo (volune, but not neuronal metabolic function) and post mortem (neuronal density and neurogenesis, but not synaptic or mitochondrial density). Furthermore, our results suggest that the observed hippocampal structural changes, named decreased volume and neurogenesis, predict learning and memory deficits, and both can be accounted for by neurogenic reduction. In addition, the above-mentioned pattern of age-related deficits closely resembles that seen in humans, suggesting the present rat version of aging to be a very useful model for investigating hippocampal aging in humans. / iii, 236 leaves : ill. (some col.) ; 29 cm.
|
690 |
A behavioural analysis of visual pattern separation ability by rats : effects of damage to the hippocampusSpanswick, Simon, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
Different events usually contain similar elements that can contribute to interference during memory encoding and retrieval. The hippocampus (HPC), a structure that is critically involved in some forms of memory, has been hypothesized to reduce interference between memories with overlapping content, thus facilitating correct recall. Pattern separation is one hypothetical process whereby input ambiguity is reduced. Here we test the hypothesis that the HPC and/or dentate gyrus (DG) are important for pattern separation by measuring performance by rats with damage in tasks that require discrimination between visual stimuli that share systematically varying numbers of common elements. Rats with HPC damage were slower to resolve discriminations with minimal degrees of overlap. Lesions of the DG did not affect the ability of rats to deal with overlap, suggesting a dissociation between the HPC and DG. Our results provide partial support for the idea that the HPC contributes to the pattern separation process. / ix, 84 leaves : ill. ; 29 cm.
|
Page generated in 0.278 seconds