651 |
Secreted amyloid precursor protein-alpha modulates hippocampal long-term potentiation, in vivoTaylor, Chanel Jayne, n/a January 2008 (has links)
Alzheimer�s disease (AD) is a neurodegenerative disorder, charaeterised by progressive loss of memory. It is important to understand what factors initiate the onset of AD so that effective therapeutic treatments can be developed to target the precise mechanisms that initiate this disease. Currently, synaptic dysfunction is widely believed to be the first significant alteration preceding the onset of AD, and is thought to be initiated by an intracellular accumulation of amyloid-β (Aβ), or a free radical-induced increase of oxidative stress. As Aβ levels rise during the onset of AD, a concomitant reduction of secreted amyloid precursor protein-α (sAPPα) is observed, as the two proteins exist in equilibrium. Intriguingly, the neuroprotective and neurotrophic properties of sAPPα indicate that it is intimately involved in the physiological pathways of the major hypotheses for the cause of AD, and may also be involved in the mechanisms that underlie learning and memory. Therefore, it is possible that during the onset of AD, the decrease of sAPPα may contribute to synaptic dysfunction by disrupting the mechanisms of synaptic plasticity.
Long-term potentiation (LTP) is the leading experimental model for investigating the neural substrate of memory formation, and describes the molecular mechanisms that underlie an increase in the strength of synaptic transmission. The role sAPPα may play in the induction and maintenance of LTP has not previously been addressed in vivo. Therefore, the aim of this thesis was to investigate whether sAPPα affects the induction of LTP in the hippocampus of the anaesthetised rat. The present findings are the first to suggest that sAPPα may modulate the induction of LTP in vivo. Decreasing the function of endogenous sAPPα (with sAPPα-binding antibodies and a pharmacological inhibition of α-secretase) significantly reduced the magnitude of LTP induced in the dentate gyrus. Therefore, the reduction of sAPPα during AD is likely to have a detrimental impact on the mechanisms of synaptic plasticity, and by extension, learning and memory. The present investigation has also found that the application of recombinant, purified sAPPα to the rat hippocampus has an �inverted U-shaped� dose-response effect on the magnitude of LTP. Low concentrations of sAPPα significantly enhanced LTP, supporting previous findings that exogenous sAPPα can facilitate in vitro LTP and enhance memory performance in animals. On the other hand, comparatively high concentrations of sAPPα significantly decreased the magnitude of LTP. This observation is also consistent with previous findings, in which high concentrations of sAPPα have been shown to be less synaptogenic and memory enhancing than lower doses. These results are the first to suggest that sAPPα modulates in vivo synaptic plasticity, and have important implications for the development of strategies to treat AD.
|
652 |
Heterosynaptic metaplasticity in area CA1 of the hippocampusHulme, Sarah R, n/a January 2009 (has links)
Long-term potentiation (LTP) is an activity-dependent increase in the efficacy of synaptic transmission. In concert with long-term depression (LTD), this synaptic plasticity likely underlies some types of learning and memory. It has been suggested that for LTP/LTD to act as effective memory storage mechanisms, homeostatic regulation is required. This need for plasticity regulation is incorporated into the Bienenstock, Cooper and Munro (BCM) theory by a threshold determining LTD/LTP induction, which is altered by the previous history of activity (Bienenstock et al., 1982). The present work aimed to test key predictions of the BCM model. This was done using field and intracellular recordings in area CA1 of hippocampal slices from young, adult male Sprague-Dawley rats. The first prediction tested was that following a strong, high-frequency priming stimulation all synapses on primed cells will show inhibition of subsequent LTP and facilitation of LTD induction (heterosynaptic metaplasticity). This was confirmed using two independent Schaffer collateral pathways to the same CA1 pyramidal cells. Following priming stimulation to one pathway, LTP induction was heterosynaptically inhibited and LTD facilitated. To more fully investigate whether all synapses show metaplastic changes, the priming stimulation was given in a different dendritic compartment, in stratum oriens, prior to LTP induction in stratum radiatum. This experiment supported the conclusion that all synapses show inhibited LTP following priming. A second prediction of the BCM model is that metaplasticity induction is determined by the history of cell firing. To investigate this, cells were hyperpolarized during priming to completely prevent somatic action potentials. Under these conditions inhibitory priming of LTP was still observed, and thus somatic action potentials are not critical for the induction of the effect. The next aim was to determine the mechanism underlying heterosynaptic metaplasticity. One way in which plasticity induction can be altered is through changes in gamma-aminobutyric acid (GABA)-mediated inhibition of pyramidal cells. For this reason, it was tested whether blocking all GABAergic inhibition, for the duration of the experiment, would prevent priming of LTP. However, priming inhibited subsequent LTP and it was concluded that GABAergic changes do not underlie either the induction, or expression, of the metaplastic state. Proposed revisions to the BCM model predict that postsynaptic elevations in intracellular Ca�⁺ determine the induction of metaplasticity. There are many potential sources for postsynaptic Ca�⁺ elevations, including entry through N-methyl-D-asparate receptors (NMDARs) or voltage-dependent calcium channels (VDCCs), or release from intracellular stores. Results of the present work demonstrate that the inhibition of LTP is dependent on the release of Ca�⁺ from intracellular stores during priming; however this release is not triggered by Ca�⁺ entry through NMDARs or VDCCs, or via activation of metabotropic glutamate receptors. Overall, the present results show that, in accordance with the BCM model, a high level of prior activity induces a cell-wide metaplastic state, such that LTD is facilitated and LTP is inhibited. In contrast to predictions of the BCM model, this is not mediated by cell-firing during priming. Instead the release of Ca�⁺ from intracellular stores is critical for induction of the metaplastic state.
|
653 |
Neuronal adaptations in rat hippocampal CA1 neurons during withdrawal from prolonged flurazepam exposure : glutamatergic system remodelingSong, Jun. January 2007 (has links)
Thesis (Ph.D.)--University of Toledo, 2007. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences." Major advisor: Elizabeth Tietz. Includes abstract. Title from title page of PDF document. Bibliography: pages 88-94, 130-136, 178-189, 218-266.
|
654 |
Apprentissage spatial et planification de l'action dans un modèle de réseau neuronal inspiré du cortex préfrontalMartinet, Louis-Emmanuel 28 October 2010 (has links) (PDF)
Un nombre important d'expériences étudiant les bases neurales de la cognition spatiale chez le rongeur souligne le rôle majeur de la formation hippocampique (voir Arleo and Rondi-Reig, 2007 pour une revue). Cette région limbique est impliquée dans l'apprentissage spatial depuis que des neurones sélectifs à une position -- nommés cellules de lieu hippocampiques (O'Keefe and Nadel, 1978) -- ont été découverts au moyen d'enregistrements psychophysiologiques chez des rats se déplaçant librement. Ces neurones participent très certainement à l'encodage de représentations spatiales dans un système de coordonnées allocentriques (c'est-'a-dire centrées sur le monde). Cependant deux autres composants sont nécessaires pour accomplir une navigation flexible (c'est-'a-dire pour planifier des détours et/ou des raccourcis) : la représentation du but et la planification de séquences d'actions dirigées vers un objectif (Poucet et al., 2004). Il a été proposé que l'hippocampe encoderait des représentations topologiques (prenant en compte la connectivité entre les différentes positions de l'environnement) adaptées à l'apprentissage de séquences d'actions (voir Poucet et al., 2004). Cependant, d'autres études expérimentales suggèrent l'existence d'un système extrahippocampique de planification de l'action partagé parmi de nombreuses régions (voir Knierim, 2006 pour une revue). Cette hypothèse postule une cognition spatiale distribuée dans laquelle (i) l'hippocampe prendrait part 'a la planification des actions en transmettant des représentations spatiales redondantes aux aires associatives supérieures, (ii) un réseau cortical élaborerait des représentations plus abstraites et compactes du contexte spatial (prenant en compte les informations de motivation, les contraintes cout de l'action / risque, et les séquences temporelles des réponses comportementales dirigées vers un but).
|
655 |
Segmentation and Visualisation of Human Brain StructuresHult, Roger January 2003 (has links)
<p>In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradigraphy) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomograpy (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen.</p><p>Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations.</p><p>The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. </p><p>A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to getfaster and more realible results than the standard techniques give.</p>
|
656 |
Volumetric Analysis of Brain MRI for Alzheimer’s DiseaseShen, Qian 09 May 2011 (has links)
Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is a gradually progressive degenerative neurological disorder that is characterized by increasing cognitive impairment, characteristic degenerative pathology and brain atrophy. Studies have shown that the progression of AD pathology in the brain develops in a predictable pattern and the pathological changes that take place in brain begin at the microscopic level long before the first signs of memory loss. Structural Magnetic Resonance Imaging (MRI), which has exceptional soft tissue contrast and detailed resolution, is the best way to noninvasively examine changes which occur early in the course of AD. For this dissertation, our aim is to improve the methods for measuring the atrophy of brain structures in AD, as seen on MRI, and to apply these methods to subjects with cognitive impairment. This study has established a new coordinate template to replace the widely used Montreal Neurological Institute (MNI) template for the atlas-based segmentation procedure. The new template was derived from the same structural image as the one used by the Automated Anatomical Labeling (AAL) procedure. The agreement of the newly developed coordinate template and AAL helps to estimate accurate spatial transformation parameters used in warping the AAL to individual subject images. The new template combines the spatial information of the structural image and the frequency information of MNI template. Based on the same principle, a set of customized templates has been developed. The customized template, associated atlas and customized priors match more closely the aging population than the previous template, so as to improve the atlas-based segmentation of regions of interest in AD assessment. Visual Rating System (VRS) of a single coronal slice (MB slice) in MRI has been another valuable method in the assessment of medial temporal lobe atrophy. An automated procedure has been developed in this study to measure the hippocampal area on the same coronal slice so that the labor of human experts in the VRS assessment of hippocampus will be significantly reduced. Finally the methods and materials (template and atlas) developed in this dissertation were applied to cross-sectional studies of subjects with cognitive impairment. We conducted volumetric analysis on subjects and conclude that the data from the new approaches have higher correlations with clinical data, and therefore can be reliably used as part of an AD assessment tool.
|
657 |
MRI Studies of the Fetal Brain and CraniumCanto Moreira, Nuno January 2012 (has links)
Ultrasound is the primary modality for fetal imaging, but Magnetic Resonance Imaging nowadays has a valuable complementary role as it often reveals findings that alter pregnancy management. Knowledge on some clinically relevant areas of the normal fetal development is still lacking, and this was the aim of this project. We wanted 1) to obtain reference MRI data of normal brain measurements before 24 gestation weeks (GW), 2) to study the development of the hippocampus, 3) to study the development of the ear and 4) to test the ability of MRI for evaluating the lip and palate. For this, we retrospectively analysed a database with 464 in vivo and 21 post mortem fetal MRI examinations. Study I evaluated a series of 70 normal fetuses. A table of normal brain measurements from 17 to 23 GW was built, the first in the literature that includes ages below 20 GW. Study II focused on the evolution of the hippocampus from 18 to 38 GW by evaluating 3 post mortem and 60 in vivo MRI examinations. Our results suggested this area to develop later and more asymmetrically than previously thought. Study III analysed a series of 122 normal MRI in vivo and 16 MRI post mortem. We described the development of the fetal ear in vivo for the first time in the literature, realizing that the value of MRI is limited by the size of the structures evaluated. In study IV, 60 brain-targeted MRI examinations of 55 normal fetuses and 5 fetuses with orofacial clefts were blindly reviewed by two readers, focusing on the lips and palates. Our results suggest a high accuracy of MRI in the evaluation of this area, regardless of fetal age or previous ultrasound findings. This thesis brings new knowledge on the normal development of the fetal brain and cranium.
|
658 |
Transcriptional Regulatory Networks in the Mouse Hippocampus.MacPherson, Cameron Ross January 2007 (has links)
<p>
<p>  / </p>
</p>
<p align="left">This study utilized large-scale gene expression data to define the regulatory networks of genes expressing in the hippocampus to which multiple disease pathologies may be associated. Specific aims were: ident i fy key regulatory transcription factors (TFs) responsible for observed gene expression patterns, reconstruct transcription regulatory networks, and prioritize likely TFs responsible for anatomically restricted gene expression. Most of the analysis was restricted to the CA3 sub-region of Ammon&rsquo / s horn within the hippocampus. We identified 155 core genes expressing throughout the CA3 sub-region and predicted corresponding TF binding site (TFBS) distributions. Our analysis shows plausible transcription regulatory networks for twelve clusters of co-expressed genes. We demonstrate the validity of the predictions by re-clustering genes based on TFBS distributions and found that genes tend to be correctly assigned to groups of previously identified co-expressing genes with sensitivity of 67.74% and positive predictive value of 100%. Taken together, this study represents one of the first to merge anatomical architecture, expression profiles and transcription regulatory potential on such a large scale in hippocampal sub-anatomy.</p>
|
659 |
Segmentation and Visualisation of Human Brain StructuresHult, Roger January 2003 (has links)
In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradigraphy) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomograpy (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to getfaster and more realible results than the standard techniques give.
|
660 |
Voltage-dependent anion channels (VDAC) in the plasma membrane induce apoptosisAkanda, Nesar January 2006 (has links)
Apoptosis, or programmed cell death, is essential for proper development and functioning of the body systems. During development, apoptosis plays a central role to sculpt the embryo, and in adults, to maintain tissue homeostasis by eliminating redundant, damaged or effete cells. Therefore, a tight regulation of this process is essential. Cell shrinkage associated efflux of K+ and Cl– through plasma membrane ion channels is an early event of apoptosis. However, little is known about these fluxes. The aim of this thesis was to investigate ion channels in the plasma membrane of neurons undergoing apoptosis. We studied differentiated (the mouse hippocampal cell line HT22, the human neuroblastoma cell line SK-N-MC, and rat primary hippocampal neurons) and undifferentiated (rat primary cortical neural stem cells cNSCs) cells with the patch-clamp technique. All cell types displayed a low electrical activity under control conditions. However, during apoptosis in differentiated neurons, we found an activation of a voltage-dependent anion channel. The conductance of the channel is 400 pS, the voltage dependence of the opening is bell shaped with respect to membrane voltage with a maximum open probability at 0 mV, and the Cl− to cation selectivity is >5:1. These biophysical properties remind about the voltage-dependent anion channel normally found in the outer mitochondrial membrane (VDACmt). Hence, we call our apoptosis-inducing plasma membrane channel VDACpl. The molecular identity of the channel was corroborated with the specific labelling of different anti-VDAC antibodies. Block of this channel either with antibodies or with sucrose prevented apoptosis, suggesting a critical role for VDACpl in the apoptotic process. VDACpl is a NADH (-ferricyanide) reductase in control cells. We found that the enzymatic activity is altered while the VDACpl channel is activated during apoptosis. Surprisingly, in cNSCs we did not find any activation of VDACpl, no VDACpl-specific labelling, no enzymatic activity, and no prevention of apoptosis with VDACpl-blocking strategies. Instead, we found an activation of a voltage-independent 37 pS ion channel, and that the Cl– channel blocker DIDS prevented apoptosis in cNSCs. Our finding that activation of VDACpl is critical for apoptosis in differentiated neurons hopefully can lead to new strategies in the treatment of several diseases related to apoptosis.
|
Page generated in 0.0502 seconds