621 |
Caractérisation pré-clinique d’un effet de type antidépresseur de la 3β methoxyprégnénolone (MAP4343), un dérivé de la pregnénolone ayant pour cible potentielle le système microtubulaire / Preclinical Characterization of an Antidepressant-like Effect of 3ß-methoxy-pregnenolone (MAP4343), a Pregnenolone Derivative Potentially Targeting the Microtubular SystemParésys, Lucie 16 March 2015 (has links)
Les troubles dépressifs constituent un problème majeur de santé publique puisqu’ils affectent plus de 350 millions de personnes dans le monde. La plupart des médicaments antidépresseurs prescrits actuellement ciblent les systèmes monaminergiques centraux. Cependant, ces molécules ont un délai d’action de plusieurs semaines et produisent des effets secondaires substantiels, souvent responsable de l’arrêt du traitement. De plus, un pourcentage non négligeable de patients ne répond que partiellement ou négativement à ces traitements. C’est pourquoi le développement de nouvelles molécules antidépressives constitue un axe majeur de recherche en psychopharmacologie. Le 3β-methoxyprégnénolone (MAP4343), un neurostéroide de synthèse, constitue une nouvelle molécule dont l’efficacité antidépressive a été récemment établie dans un modèle d’isolement social chez le rat. Le mode d’action du MAP4343 serait différent de celui des antidépresseurs conventionnels, puisqu’il a été montré in vitro qu’il pouvait se lier à la protéine associée aux microtubules de type 2 (MAP2) pour ainsi modifier la fonction microtubulaire, ce qui, in fine, favoriserait la plasticité cérébrale.L’objectif de cette thèse est de consolider les preuves de l’efficacité antidépressive du MAP4343 et d’élucider les mécanismes d’action cellulaires associés à son effet pharmacologique. Pour cela, nous avons utilisé un modèle animal, de dépression à savoir le Toupaye de Belanger (toupaia belangeri) soumis au stress psychosocial chronique qui développe des troubles comportementaux, fonctionnels et hormonaux similaires à ceux observés chez les patients dépressifs.Chez le Toupaye, l’administration chronique de MAP4343 (50 mg/kg/jour ; per os) pendant quatre semaines permet d’inhiber la diminution de l’activité locomotrice et le comportement d’évitement induit par le stress. De plus, les altérations physiologiques comme la diminution du poids corporel, l’hyperthermie ou encore les troubles du sommeil sont enrayés par le traitement au MAP4343. Enfin, la molécule agit en inhibant partiellement l’hyperactivation de l’axe adreno-corticotrope. Les mesures dans l’hippocampe de l’expression des isoformes de l’α-tubuline, élément constitutif des microtubules, montrent une diminution de l’α-tubuline tyrosinée, une isoforme plus abondante dans des microtubules néoformés. Ce phénomène n’est pas renversé par le MAP4343. Cependant, le stress chronique induit une réduction de l’expression de la forme acétylée de l’α-tubuline, un phénomène qui serait plus tardif lors d’une altération de la fonction microtubulaire. De façon intéressante, le MAP4343 permet de prévenir cette baisse de l’acétylation. Ce travail de thèse démontre un effet antidépresseur robuste du MAP4343, confirmant ainsi une première étude réalisée auparavant chez le rat. Son efficacité peut se maintenir lors d’un traitement prolongé chez le Toupaye. Cette molécule constituerait ainsi une nouvelle classe d’antidépresseurs ayant comme cible potentielle le système microtubulaires. Des expériences complémentaires seront nécessaires afin de préciser le mode d’action du MAP4343 sur les fonctions neuronales. / Depressive disorders affect more than 350 million people worlwide generating major public health. Most of the antidepressant drugs currently used target monaminergic systems. However, the onset of action of these drugs is delayed for several weeks and they produce important side effects responsible for the discontinuation of treatment. Furthermore, a large rate of patients responds poorly or not at all to this kind of treatment. Accordingly, the development of new antidepressant drugs constitutes a major axis of psychopharmacology research. 3ß-methoxypregnenolone (MAP4343) is a new synthetic neurosteroid whose antidepressant efficacy was recently established in a rat model of social isolation. The mechanism of action of MAP4343 is very likely different from that of conventional antidepressants, as it was shown in vitro that this compound can bind the type 2 microtubule associated protein (MAP2) and may promote in fine the neuronal plasticity. The objective of this thesis is to further demonstrate the antidepressant efficacy of MAP4343 and to elucidate the cellular mechanisms associated to its pharmacological effect. For this purpose, we used one animal models of depression: tree shrews (toupaia belangeri) subjected to a chronic psychosocial stress. Stressed tree shrews develop behavioral, functional and hormonal alterations similar to those observed in the depressive patients. Chronic administration (four weeks) of MAP4343 (50 mg / kg / day) inhibits both the decrease of locomotor activity and the avoidance behavior induced by chronic stress. Furthermore, physiological changes such as hyperthermia or sleep disorders are also reversed by MAP4343 treatment. Finally, the molecule acts by partially inhibiting the stress-induced hyper-activation of hypothalamo-pituitary-adrenal axis. The quantitative study of post-translational modifications of α-tubulin (a major component of microtubules) in the hippocampus shows a decrease of tyrosinated α-tubulin, a dynamic microtubules marker. This phenomenon is not reversed by MAP4343 treatment. However, chronic stress exposure decreases the expression of acetylated α-tubulin, a later phenomenon occurring during microtubular alteration. Interestingly, MAP4343 prevents this decrease. To conclude, this thesis demonstrates a strong antidepressant effect of MAP4343, reproducible in one relevant and translational animal model of depression, thus confirming a previous study realized in an isolated rat model. The efficacy of this compound is observed from the first day of treatment in the rat and persists during a prolonged treatment. This molecule belongs to a new class of antidepressants potentially targeting the microtubular system. Additional experiments will be necessary to well understand the mechanism of action of the MAP4343 on neuronal functions.
|
622 |
Influence des Acides Gras Poly-Insaturés n-3 (oméga3) sur les intéractions Neurones/Astrocytes au cours du vieillissement cérébral : aspects cognitifs et cellulaires / Impact of omega 3 fatty acids on the interaction between astrocyte and neurone during brain aging : cognitive and cellular aspectsLatour, Alizée 06 June 2013 (has links)
Un statut pauvre en Acides Gras Poly-Insaturés ω3 (AGPI ω3), favorisé par une alimentation occidentale comportant un faible ratio en ω3/ω6, semble contribuer au déclin cognitif chez les personnes âgées, mais les mécanismes cellulaires impactés sont encore mal connus. Nous avons donc étudié l’influence du statut en ω3 sur l’évolution de la neurotransmission glutamatergique et des fonctions astrocytaires au cours du vieillissement dans l’hippocampe de rats. Ces processus sont impliqués dans la formation de la mémoire et leurs dérégulations participent aux dommages cérébraux conduisant au déclin cognitif. Nous avons comparé 6 groupes de rats agés de 6 et 22 mois nourris avec un régime déficient en ω3, équilibré en ω3/ω6 ou supplémenté en ω3 (huile de poisson) : Jeunes équilibrés (JEq), déficients (JDef) ou supplémentés (JSup) et Agés équilibrés (AEq), déficients (ADef) ou supplémentés (ASup). Nous avons évalué l’efficacité synaptique et la plasticité (enregistrements électrophysiologiques), les fonctions astrocytaires (capture de glutamate et expression de la GFAP), les marqueurs neuronaux (transporteurs et récepteurs du glutamate), les capacités cognitives (Openfield et Labyrinthe de Barnes) et analysé la composition lipidique cérébrale. Les manipulations nutritionnelles d’apport en ω3 modifient efficacement l’incorporation de l’acide docosahexaénoïque (DHA, principale ω3 des membranes cellulaires) dans le cerveau (-50% deficient vs équilibré, +10% supplementé vs équilibré). Le vieillissement induit une diminution de 35% de l’efficacité synaptique en raison d’une baisse de la libération de glutamate pré-synatique, et une diminution de 30% de la capture de glutamate associé à une astrogliose conséquente (+100% GFAP). La déficience en ω3 acentue les effets du vieillissement (rats ADef vs AEq: -35% efficacité synaptique, -15% capture de glutamate, +30% GFAP). Al’inverse, la supplémentation en ω3 améliore l’efficacité synaptique (rats ASup vs AEq +25%) et semble inhiber l’astrogliose chez le rat âgé (ASup vs JEq : pas de modification de la GFAP). Les tests comportementaux montrent que le vieillissement a des effets plus marqués chez les déficients en ω3 et au contraire atténués chez les supplémentés. Nos résultats révèlent des altérations de la synapse glutamatergique de l’hippocampe au cours du vieillissement aggravées par la déficience en ω3 et atténuées par la supplémentation en ω3. Afin d’évaluer l’influence du statut en ω3 sur l’activation astrocytaire, des modèles in vitro d’astrocytes « âgés » et « activés » par des cytokines inflammatoires dont l’augmentation à bas bruit est caractéristique du vieillissement cérébral, ont été développés. / A poor ω3 polyunsaturated fatty acids (ω3 PUFA) status, favored by the low ω3/ω6 ratio in western diets, seems to contribute to cognitive decline in the elderly, but mechanistic evidence is lacking. We therefore explored the impact of ω3 status on the evolution of glutamatergic transmission and astrocytic functions in the hippocampus during ageing in rats. These processes are involved in memory formation and their dysregulation participates to the age-related brain damage leading to cognitive decline. We have compared 6 groups of rats aged 6 to 22 months fed ω3-deficient, ω3/ω6-balanced, or ω3 (fish oil) supplemented diets: Young ω3 Balanced (YB), Deficient (YD) or Supplemented (YS), and Old ω3 Balanced (OB), Deficient (OD) or Supplemented (OS) rats. We have evaluated synaptic efficacy and plasticity (electrophysiological recording), astroglial regulations (glutamate uptake and GFAP expression), neuronal markers (glutamate transporters and receptors), cognitive abilities (Barnes maze and Openfield) and analyzed brain fatty acids composition. Dietary modulation of ω3 intakes efficiently modified the incorporation of docosahexaenoic acid (DHA, the main ω3 in cell membranes) in brain (-50% deficient vs balanced, +10% supplemented vs balanced). Ageing induced a 35% reduction of synaptic efficacy due to decreased pre-synaptic glutamate release, and a 30% decrease in the astroglial glutamate uptake associated to a marked astrogliosis (+100% GFAP). ω3 deficiency further decreased these hallmarks of ageing (OD vs OB rats: -35% synaptic efficacy, -15% glutamate uptake, +30% GFAP). On the opposite, ω3 supplementation increased synaptic efficacy (+25% OS vs OD) and seems to abolish astrogliosis (OS vs YS : no change in GFAP). Behavioural tests showed some increased effects of age in deficient rats and attenuated effects in supplemented ones. Our results characterize some specific age-related alterations of the glutamatergic synapse in the hippocampus that are aggravated by a dietary deficit in ω3 and attenuated by ω3 supplementation. In order to explore ω3 status on astrocytic activation, in vitro models of “old” astrocytes and “activated” by inflammatory cytokines which characterize the low-grade inflammation in brain aging, have been developed.
|
623 |
Adolescent Development of Multiple Learning SystemsDavidow, Juliet Y. January 2014 (has links)
Adolescence is a time filled with opportunities for making choices that have not been encountered before. How do adolescents learn to make these decisions? Maturation of learning processes coupled with dynamic changes in brain systems for learning must be studied in order to determine the mechanisms that underlie adolescent decision making. Research in adults has found contributions from multiple learning systems for decision making. One such system learns incrementally from feedback and reinforcement, and depends in part on the striatum. Another system, in the hippocampus, encodes episodes and allows for flexible use of learned information when required by novel contexts. Recent research in adults explores how these systems can cooperate and compete to facilitate decision making. Ongoing research into learning and decision making processes over the course of adolescence has also implicated the striatum in learning and decision making, but how the hippocampus and striatum interact for decision making remains unknown. In this dissertation I investigate contributions of multiple learning systems for learning and decision making in adolescence. I leverage what is known about underlying brain systems for learning and decision making in adults, and consider how changes in these same systems over adolescence might contribute to behavioral shifts in adolescence. Specifically, in the studies included here, I show how developmental trajectories for learning can enhance performance in adolescents for some types of learning and not others. In the first study I ask how do the striatal and hippocampal systems contribute to feedback based learning in adolescence? I show that in adolescents, both the hippocampus and the striatum contribute to probabilistic feedback learning, and that this type of learning is better in adolescents than in adults. This response to feedback in the hippocampus was found to relate to memory accuracy for features of feedback events only in adolescents. Pushing the finding of hippocampal activation in adolescents, in the second study I ask how does learned value influence flexible decision making in adolescence? Adolescents did not show reliable transfer of value, but there were individual differences in this tendency. Thus, in the third study, I ask which brain regions account for individual differences in learning and value transfer? I show that variability in connectivity at rest between the hippocampus and the vmPFC related to the tendency to transfer value in adults. Taken together, these results contribute to a growing body of research in adolescent decision making, and extend upon our understanding of the mechanisms for learning and decision making systems, and how they change over development.
|
624 |
Dissecting the role of the hippocampal-prefrontal circuit in anxietyPadilla Coreano, Nancy January 2016 (has links)
The ventral hippocampus (vHPC), medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) are each required for the expression of anxiety-like behavior. Yet the role of each individual element of the circuit is unclear. The projection from the vHPC to the mPFC has been implicated in anxiety-related neural synchrony and spatial representations of aversion. The role of this projection was examined using multi-site neural recordings combined with optogenetic terminal inhibition.
Inhibition of vHPC input to the mPFC disrupted anxiety and mPFC representations of aversion, and reduced theta synchrony in a pathway-, frequency- and task-specific manner. Moreover, bilateral, but not unilateral, inhibition altered physiological correlates of anxiety in the BLA, mimicking a safety-like state. These results reveal a specific role for the vHPC-mPFC projection in anxiety-related behavior and the spatial representation of aversive information within the mPFC. Moreover, these data suggested that theta-frequency input from the vHPC plays a causal role in anxiety-like behavior.
Next, it was investigated whether optogenetic stimulation of the vHPC-mPFC at a theta frequency was sufficient to increase anxiety. Stimulating the vHPC input to the mPFC with a sinusoidal light pattern at 8 Hz significantly increased anxiety behavior. The anxiogenic effect of vHPC terminal stimulation was frequency- (8 Hz but not 20 Hz) and pattern- (sinusoids but not pulses) specific. To understand how pulses and sinusoidal light modulate mPFC neurons differentially, mPFC pyramidal neurons were recorded both in vitro and in vivo while stimulating vHPC terminals with the same sinusoidal or pulsatile patterns. In vitro, sinusoidal stimulation increased the rate of spontaneous EPSCs, while pulses evoked strong, stimulus-locked EPSCs. In vivo, sinusoidal stimulation of vHPC terminals increased the phase-locking of mPFC single unit spiking to the optical stimulation pattern without changing overall firing rates. Together, these results suggest that sinusoidal stimulation at 8 Hz enhances theta-frequency activity in mPFC neurons as well as anxiety-related behavior. Moreover, they suggest that theta-frequency components of neural activity play a privileged role in vHPC-mPFC communication and hippocampal-dependent forms of anxiety.
|
625 |
Pathobiological Mechanisms and Treatment of Electrophysiological Dysfunction Following Primary Blast-Induced Traumatic Brain InjuryVogel III, Edward Weigand January 2017 (has links)
Traumatic brain injury (TBI) is the signature injury of the ongoing military conflicts in the Middle East and Afghanistan, largely due to the use of improvised explosive devices (IEDs), which have affected soldiers and civilians alike. Blast-induced TBI (bTBI) biomechanics are complex and multiphasic. While research has clearly demonstrated the negative effects of penetrative (secondary blast) and inertia-driven (tertiary blast) injury, the effect of shock wave loading (primary blast) on the brain remains unclear. Combined primary-tertiary blast exposure in vivo has been reported previously to alter brain function, specifically hippocampal function; however, it is extremely difficult to deliver primary blast exposure in isolation with an in vivo injury model. The research presented in this thesis utilized a custom-designed in vitro blast injury model to deliver military-relevant shock wave exposures, in isolation, to organotypic hippocampal slice cultures (OHSCs). To contextualize blast-induced pathobiology with previous TBI studies, the first goal of this thesis was to experimentally characterize the deformation profile induced in OHSCs with our blast injury model. Using stereoscopic, high-speed cameras and digital image correlation to calculate strain, we found that our blast model induced low strain magnitudes (<9%) but at high strain rates (25-86s-1), which aligned closely with associated computational simulations of our model.
The second aim was to determine if primary blast was capable of altering hippocampal electrophysiological function. We exposed OHSCs to a range of shock intensities and found, using a micro-electrode array system, that long-term potentiation (LTP), a measure of synaptic plasticity, was very sensitive to primary blast exposure; a threshold for disruption of LTP was found between 9 and 39 kPa•ms impulse. Alternative measures of basal electrophysiology were less sensitive than LTP. Blast exposure significantly reduced LTP between 1 and 24 hours post-injury, and this deficit persisted through 6 days post-injury. Depending on shock intensity, LTP spontaneously recovered 10 days post-injury.
The third aim was to explore the cellular mechanisms for blast-induced LTP deficits. Using a chemical LTP induction protocol, blast exposure altered key proteins necessary for the induction of LTP by 24 hours post-injury including, postsynaptic density protein-95 (PSD-95), a major scaffolding protein that organizes the postsynaptic density (PSD), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptor 1 (AMPA-GluR1), and stargazin, an auxiliary GluR1 protein that binds AMPA-GluR1 to PSD-95. Modulation of the cyclic adenosine monophosphate (cAMP) pathway reversed the observed effects of blast on LTP. We theorized that blast-induced disruption of PSD-95 prevented translocation, and subsequent phosphorylation, of GluR1-containing AMPARs to the postsynaptic membrane, which, in turn, prevented potentiation.
The final aim was to investigate the efficacy of phosphodiesterase-4 (PDE4) inhibitors, which block degradation of cAMP, as a therapeutic strategy. When delivered immediately following primary blast injury, multiple PDE4 inhibitors proved efficacious in restoring LTP measured 24 hours post-injury. Roflumilast, a Food and Drug Administration-approved PDE4 inhibitor, was effective when delivered at a clinically relevant concentration (1nM) and at a delayed time point (up to 6 hours). Roflumilast reversed blast-induced changes in expression/phosphorylation of the key LTP protein targets. We hypothesized that maintenance of PSD-95 drove the observed therapeutic effect. Greater work is necessary to determine how blast exposure degrades PSD-95 and how roflumilast prevented these detrimental effects.
This thesis has shown that primary blast exposure can negatively alter neurological function, as well as protein expression and phosphorylation. These studies expand the understanding of primary blast injury mechanisms, provide computational models with important tissue-level tolerance criteria, inform protective equipment design, inform clinical care guidelines for bTBI, and present a promising therapeutic candidate for further clinical investigation.
|
626 |
Avaliação dos precursores da apoptose neuronal em preparados citosólicos, mitocondriais e nucleares do córtex cerebral frontal e hipocampo de porcos submetidos à hemodiluição normovolêmica aguda / Evaluation of neuronal apoptosis precursors in citosolic, mitochondrial and nuclear fraction of cerebral cortex and hipocamppus in pigs after acute normovolemic hemodilutionFrazilio, Fabrício de Oliveira 27 January 2012 (has links)
Introdução: A anemia aguda tem sido associada com distúrbios neurofisiológicos e cognitivos em pacientes saudáveis. Evidências experimentais sugerem que a hemodiluição pode aumentar lesões cerebrais, limitando o suprimento de oxigênio ao tecido cerebral. No entanto, o mecanismo exato pelo qual as lesões cerebrais ocorrem em pacientes anêmicos ainda não está claramente definido. O objetivo desse estudo foi avaliar os precursores da apoptose neuronal Bax, Bcl-x no córtex frontal, atividade das caspases 3 e 9 na fração citosólica do hipocampo e na fração mitocondrial do córtex frontal, assim como a fragmentação do DNA na fração nuclear e mitocondrial do córtex frontal, após hemodiluição normovolêmica aguda. Métodos: Vinte e quatro porcos foram anestesiados e randomizados em 4 grupos de 6 animais: Controle, hemodiluição normovolêmica aguda (HNA) com hematócrito alvo de 15% (Ht 15%), HNA com hematócrito alvo de 10% (Ht 10%) e hipóxia-hipóxica (HH). A HNA foi realizada com 1ml de hidroxetil amido (130/0,4) por ml de sangue retirado, até o hematócrito alvo desejado (10 ou 15%). O HH consistiu de ventilação com baixa fração expirada de O2 (FiO2), sendo de 6% por 60 minutos, servindo como grupo controle positivo. Os animais do grupo controle não sofreram nenhuma dessas intervenções. As proteínas pró-apoptótica Bax e anti-apoptótica Bcl-x foram avaliadas por Western blotting nas frações nucleares e mitocondriais do córtex frontal. A atividade das caspases 3 e 9 foi avaliada nas frações mitocondrial e citosólica do hipocampo por espectrofluorometria. A fragmentação do DNA foi avaliada por eletroforese nas frações nuclear e mitocondrial do córtex frontal. Os dados foram comparados por análise de variância (ANOVA) seguida por teste de Tukey (p<0,05). Resultados: Não foi observada diferença significativa entre os grupos controle, Ht 15% e Ht 10% em relação à proteína pró-apoptótica Bax nas frações nuclear e mitocondrial. Entretanto, o grupo HH foi significativamente diferente dos grupos controle e Ht 15% na fração nuclear e de todos os grupos na fração mitocondrial. Não foi encontrada diferença significativa em relação à Bcl-x. A atividade das caspases 3 e 9 nas frações mitocondrial e nuclear foi diferente no grupo HH quando comparado com os demais grupos. Não foi observada diferença significativa em relação à fragmentação do DNA entre os grupos controle, Ht 15% e Ht 10%. Conclusão: A avaliação dos precursores da apoptose demonstrou que a hemodiluição normovolêmica aguda com hematócrito alvo de 15% e 10% não induziu apoptose, sugerindo que a oxigenação cerebral foi preservada / Background: Acute anemia has been associated with neurophysiologic and cognitive dysfunctions in healthy patients. Experimental evidences suggest that hemodilution may increase cerebral lesions, limiting oxygen supply to the brain tissue. Nevertheless, the exact mechanisms through which cerebral lesions occur in anemic patients havent been clearly defined. Therefore, the objective of the present study was to evaluate neuronal apoptosis precursors Bax, Bcl-x in the frontal cortex, caspase 3 and 9 activity in the mitochondrial and cytosolic fractions of the hippocampus, even as DNA fragmentation in the mitochondrial and nuclear fractions of the frontal cortex after acute normovolemic hemodilution. Methods: Twenty four pigs were anesthetized and randomized into 4 groups of 6 animals: sham, acute normovolemic hemodilution (ANH) to reach a hematocrit of 15% (Ht 15%), ANH to reach a hematocrit of 10% (Ht 10%) and hypoxic-hipoxia (HH). ANH was performed with 1ml hydroxyethyl starch 130/0.4 (HES) per ml of blood withdrawn to the desired target hematocrit (10 or 15%). HH consisted of ventilation with low fraction of inspired oxygen (FiO2) of 6% for 60 minutes, serving as a positive control group. Sham animals were not involved in any of these interventions. Pro-apoptotic Bax and anti-apoptotic Bcl-x proteins were evaluated by Western blotting in nuclear and mitochondrial fractions of the frontal cortex and activities of caspases-3 and-9 were evaluated in the mitochondrial and cytosolic fractions of the hippocampus by spectrofluorometry. DNA fragmentation was evaluated by electrophoresis in the mitochondrial and nuclear fraction. Data were compared by analysis of variance (ANOVA) followed by Tukeys test (p<0.05). Results: No statistical significance was found among sham, Ht 15% or Ht 10% groups regarding pro-apoptotic protein Bax, in nuclear or mitochondrial fractions. However, group HH presented significant difference from sham and Ht 15% groups in the nuclear fraction and from all groups in the mitochondrial fraction. No statistical significance was found with Bcl-x. The activities of caspases-3 and-9 in cytosolic and mitochondrial fractions were statisticaly different in group HH when compared with all other groups. No statistical significance was found in relation to DNA fragmentation among sham, Ht 15% or Ht 10%. Conclusion: The evaluation of apoptosis precursors demonstrated that ANH with target hematocrit 15% and 10% did not induce neuronal lesion, suggesting that cerebral oxygenation was preserved
|
627 |
Expressão dos microRNAs miR-145, miR-181c, miR-199a e miR-1183 em hipocampo e sangue de pacientes com epilepsia do lobo temporal mesial / Expression of microRNAs miR-145, miR-181c, miR-199a and miR-1183 in blood and hippocampus of patients with mesial temporal lobe epilepsyLourenço, Luana Grupioni 27 October 2015 (has links)
Introdução: A epilepsia do lobo temporal mesial (ELTM) é a forma mais comum de epilepsia parcial e com índices significativos de resistência aos tratamentos farmacológicos. Um dos grandes desafios para a neurociência na atualidade é o desenvolvimento de biomarcadores que facilitem o diagnóstico e prognóstico para a epilepsia. Recentemente, algumas pesquisas demonstraram que microRNAs circulantes no sangue são biomarcadores sensíveis e específicos para várias doenças, incluindo do SNC, podendo ser obtido de forma não invasiva e representando um método de detecção eficiente e de baixo custo. Portanto, nosso trabalho teve como objetivo analisar o perfil de expressão dos microRNAs miR-145, miR-181c, miR199a e miR-1183 no hipocampo e fração leucocitária do sangue de pacientes com ELTM e investigar se os mesmos podem auxiliar como biomarcadores de diagnóstico e prognóstico para a epilepsia. Pacientes e métodos: Foram utilizadas amostras de hipocampo e sangue de 20 pacientes com ELTM, sendo 10 com boa evolução pós-operatória (Engel I) e 10 com evolução pósoperatória insatisfatória (Engel III e IV), e para controle foram utilizados hipocampos de necropsias e sangue de indivíduos saudáveis. A análise de expressão dos miRNAs foi feita utilizando a técnica de RQ-PCR. Resultados e Conclusões: As expressões dos miRNAs se comportaram de forma diferente no hipocampo e sangue de pacientes com ELTM quando comparados aos grupos controles. O miR- 145 apresentou-se hipoexpresso no hipocampo e hiperexpresso no sangue. Os miRNAs miR-145, miR-181c, miR199a e miR-1183 apresentaram-se hiperexpressos na fração leucocitária do sangue de pacientes com ELTM, podendo estes contribuir como possíveis biomarcadores para auxiliarem no diagnóstico. Ainda, não encontramos diferenças estatística desses miRNAs no sangue e hipocampo de pacientes Engel I versus Engel III e IV, no entanto, o miR-1183 apresentou-se progressivamente mais expresso no sangue dos pacientes nos grupos controle, no grupo Engel I e no grupo Engel III e IV respectivamente. / Introduction: The mesial temporal lobe epilepsy (MTLE) is the most common form of partial epilepsy and also presents significant resistance to pharmacological treatment. A major challenge for neuroscience today is the development of biomarkers that facilitate the diagnosis and prognosis for epilepsy. Recently, research has shown that microRNAs circulating in the blood are sensitive and specific biomarkers for various diseases, including CNS, they can be obtained noninvasively and represent a low cost detection method. Thus, our study aimed to analyze the expression profile of microRNAs miR-145, miR-181c, miR199a and miR- 1183 in the hippocampus and leukocyte fraction of the blood of patients with MTLE and investigate whether they can assist as diagnostic and prognosis biomarkers for epilepsy. Patients and Methods: Hippocampus and blood samples of 20 patients with MTLE were used; ten with good postoperative outcome (Engel I) and ten with poor postoperative outcome (Engel III and IV), and for the control group hippocampus of necropsy and blood of healthy individuals were used. The analysis of the expression of miRNAs was performed using RQ-PCR. Results and Conclusions: The expression of miRNAs behaved differently in the hippocampus and blood of patients with MTLE when compared with the control groups. This different behavior was most evident in miR-145, which was hypo-expressed in the hippocampus and hyper-expressed in the blood. MiRNAs miR-145, miR-181c, miR199a and miR-1183 were hyper-expressed in the leukocyte fraction from the blood of patients with MTLE, and these can be potential biomarkers to aid in the diagnosis. We found no statistical differences of these miRNAs in blood and hippocampus of patients Engel I versus Engel III and IV, however, miR-1183 was progressively expressed in the blood of patients in the control groups, Engel I and Engel III and IV respectively.
|
628 |
Neurogenèse adulte hippocampique : Rôle fonctionnel dans la mémoire épisodique et recrutement des nouveaux neurones lors de la mémorisation / Adult hippocampal neurogenesis : Functional role in episodic memory and recruitment of newborn neurons during memoryGros, Alexandra 28 September 2015 (has links)
La neurogenèse adulte du gyrus denté de l’hippocampe joue un rôle essentiel dans les processus mnésiques dépendants de l’hippocampe, mais son rôle dans des formes complexes de mémoire comme la mémoire épisodique n’a jamais été exploré. Le travail de cette thèse porte sur l’étude de l’implication des nouveaux neurones de l’hippocampe dans la mise en mémoire d’un souvenir épisodique à long terme. Nous avons développé une nouvelle tâche de mémoire épisodique reposant sur la présentation occasionnelle d’épisodes permettant d’encoder des informations de type « Quoi – Où – Dans quel contexte ». Nous montrons pour la première fois que les rats sont capables de se souvenir à très long terme de brefs épisodes de vie et d’utiliser cette mémoire d’une manière flexible. La caractérisation des profils de rétention permet d’accéder aux capacités individuelles de recollection des différents éléments du souvenir et montre que le rappel fiable de la mémoire épisodique nécessite l’intégrité de l’hippocampe et met en jeu un vaste réseau hippocampo-cortical dont l’activation est corrélée au rappel. Les performances de rats soumis à une irradiation focale de l’hippocampe montrent que la neurogenèse adulte hippocampique contribue de façon significative à la consolidation et au rappel fiable du souvenir épisodique. Ces résultats sont discutés dans le cadre d’une implication de la neurogenèse adulte dans la résolution de la mise en mémoire d’événements occasionnels dans le but de discriminer deux épisodes de vie proches, en lien avec les fonctions de séparation et de complétion de patterns de l’hippocampe. Par ailleurs, les mécanismes moléculaires qui sous-tendent le recrutement des nouveaux neurones lors d’un apprentissage restent inconnus. Nous avons analysé le rôle du gène immédiat précoce Zif268, acteur moléculaire essentiel dans les processus mnésiques, et montrons que ce gène joue un rôle crucial dans la sélection et le recrutement des nouveaux neurones lors de la mémorisation au cours de leur période critique d’intégration dans les réseaux neuronaux de l’hippocampe. Ce travail apporte des éléments nouveaux sur la participation des nouveaux neurones hippocampiques dans les processus mnésiques dans une situation à forte demande cognitive basée sur l’encodage d’une représentation intégrée et résolue d’événements occasionnels complexes, ainsi que sur les mécanismes qui sous-tendent leur recrutement. / Adult hippocampal neurogenesis plays a critical role in hippocampal-dependent memory, however its role in complex forms of memory such as episodic memory has not as yet been explored. The work presented in this thesis focuses on the issue of the involvement of newborn hippocampal neurons in long term episodic memory. We developed a new episodic memory task based on the presentation of occasional episodes allowing rats to encode “What – Where – In which context” information. We show for the first time that rats are able to remember on the long term brief past episodes of life and to use their episodic memory in a flexible manner. The characterization of retention profiles allows us to identify individual abilities in the recollection of the various elements of the memory and shows that episodic memory recall requires the integrity of the hippocampus and involves a hippocampo-cortical network, the activation of which correlates with recall performance. Performance of rats subjected to focal irradiation of the hippocampus shows that adult hippocampal neurogenesis contributes significantly to the consolidation and faithful recall of episodic memory. These results are discussed in the context of the implication of hippocampal newborn neurons in the resolution of memories of occasional events in order to discriminate different, but closely related episodes of life in relation to pattern separation and pattern completion functions of the hippocampus. Furthermore, the molecular mechanisms underlying the recruitment of newborn hippocampal neurons by learning remain to date unknown. We investigated the role of Zif268, an immediate early gene known to play an essential role in memory processes, and show that this gene plays a crucial role in the selection and recruitment of newborn hippocampal neurons by learning during their critical period of integration in hippocampal neural networks. Overall, this work brings new knowledge on the contribution of newborn hippocampal neurons to memory processes in a highly demanding cognitive situation based on the encoding of an integrated and high-resolution representation of complex occasional events, and on the mechanisms underlying their recruitment.
|
629 |
Altered function of CCK-positive interneurons in mice over-expressing the schizophrenia risk gene neuregulin 1Kotzadimitriou, Dimitrios January 2016 (has links)
The Neuregulin 1 (NRG1)-ErbB4 signalling pathway is implicated in critical processes for the development and function of neuronal circuits. Post mortem studies have reported that elevated expression of NRG1 type 1 isoform is associated with schizophrenia. Importantly previous behavioural studies in mice that overexpress the NRG1 type 1 isoform (NRG1<sup>tg-type-I</sup>) have suggested a schizophrenia endophenotype including impairment in the hippocampus-dependent spatial working memory, prepulse inhibition (PPI) of the startle reflex and alterations in the gamma band rhythmogenesis This study aims to reveal the cellular targets of the NRG1-ErbB4 signalling pathway and putative alterations in the function of the hippocampal network in NRG1<sup>tg-type-I</sup> mice. Immunocytochemical analysis showed that the NRG1 receptor ErbB4 is predominantly localized in interneurons comprising parvalbumin positive (PV) and cholecystokinin (CCK) expressing cells. Comparison of the density of ErbB4-positive cells between the hippocampus of wild type (WT) and NRG1<sup>tg-type-I</sup> mice suggested that NRG1 over-expression resulted in decreased number of ErbB4 immunopositive hippocampal interneurons. This is consistent with the proposed role of the NRG1-ErbB4 signalling in the migration of GABAergic cells during neurodevelopment and with the NRG1-mediated internalisation of the ErbB4 receptors. CCK- positive cells are a major target of NRG1-ErbB4 signalling, and therefore the NMDA receptor and AMPA receptor components of glutamatergic transmission were analysed in this population of cells by performing whole cell recordings of evoked and miniature excitatory post synaptic currents. Glutamatergic neurotransmission in CCK-positive cells was found to be compromised in the hippocampus of NRG1<sup>tg-type-I</sup> mice. This change was attributed to hypofunction of NMDA receptors but not AMPA receptors post-synaptically. Next, the inhibitory output of CCK-positive cells to pyramidal cells was examined. Analysis of the optogenetically elicited inhibitory post synaptic currents (IPSCs) did not reveal any changes in the properties of the GABAergic synapse formed by these cells due to NRG1 over-expression Finally, the effects of this NMDA receptor hypofunction in the recurrent inhibition were analysed by performing whole cell recordings during the gamma relevant optogenetic entrainment of the hippocampal network. It was found that the disynaptic inhibition, a key synaptic interaction for the generation of gamma oscillations, depends on the NMDA receptors and was altered in the hippocampus of NRG1<sup>tg-type-I</sup> mice. Together these data point out a key modulatory role of the NRG1-ErbB4 signalling in the neurodevelopment of cortical microcircuits and a link between ErbB4 and NMDA receptor function with a possible association to schizophrenia pathogenesis.
|
630 |
Exploring the roles of inputs to hippocampal area CA1Allison, Elizabeth Anastasia Margaret Alice January 2016 (has links)
Place cells in the hippocampus fire in specific locations within an environment. The aim of this thesis is to investigate the different inputs to the hippocampus and what they contribute to place cell activity and performance of hippocampus-dependent tasks. Place cell activity can also be modulated by relevant features of a task such as a future destination or trajectory. Initial experiments investigated the origin and function of this trajectory-dependent activity and later experiments targeted the medial entorhinal cortex inputs to the hippocampal formation and investigated what they contributed to place cell activity and behaviour. The purpose of the first study was to determine whether trajectory dependent activity occurs in CA3 in a hippocampus-dependent serial-reversal task on the double-Y-maze and to compare it with that seen in CA1. Place cells in both CA3 and CA1 were recorded in rats trained on a serial-reversal task on a double-Y-maze. Rats were trained to run from a start box through two Y-junctions to one of four goal locations. After 10 trials the reward was moved to a new location, until all the boxes had been rewarded. Previous research has found that 44% of CA1 place cells with fields in the start areas of the maze show trajectory-dependent activity in rats trained on the task. This study found that a similar proportion of CA3 place cells also show trajectory-dependent activity in rats trained on this task and that this activity develops at the same time point as the task is learned. This result suggests that trajectory-dependent activity may be generated earlier in the circuit than CA1. Secondly, the contribution of the nucleus reuniens (N.Re) to spatial tasks was investigated. Previously, trajectory-dependent activity has been found to reach the hippocampus via N.Re, however this was shown in a hippocampus-independent task. To investigate the possible role that this input may play in behaviour, N.Re was lesioned and animals were tested on acquisition and performance of the double-Y-maze serial-reversal task described previously. Surprisingly, lesions had no effects on either learning or performance. Taken together with previous data from other studies, this suggests that trajectory dependent activity is not one unique phenomenon but is rather multiple similar phenomena which may originate in different brain regions and fulfil different roles in navigation depending on the demands of the task. In addition, animals were tested on tasks involving allocentric or egocentric navigation. Results suggest that N.Re may have a role in the selection or performance of allocentric navigation but not egocentric navigation. Thirdly, the role of inputs from the medial entorhinal cortex (MEC) to place cells was investigated. Consistent with previous research, MEC lesions resulted in larger, less precise place fields in CA1 place cells. By performing cue-rotation experiments using either distal or proximal cues it was observed that place fields in the MEC lesion animals were not anchored to distal cues but were either stable or anchored to other aspects of the environment. However, place cells in the MEC lesion group still followed proximal cues suggesting that the deficit is restricted to distal landmarks. This suggests that the MEC may process distal landmark information allowing the use of distal landmarks for orientation and self-location within an environment. This thesis contributes a better understanding of the role and origins of trajectory dependent activity as well as a novel finding that the MEC contributes information about distal landmarks to the hippocampus.
|
Page generated in 0.0411 seconds