• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 693
  • 223
  • 102
  • 69
  • 60
  • 44
  • 22
  • 21
  • 21
  • 21
  • 21
  • 21
  • 21
  • 11
  • 9
  • Tagged with
  • 1486
  • 421
  • 349
  • 206
  • 203
  • 154
  • 130
  • 125
  • 112
  • 105
  • 101
  • 95
  • 94
  • 86
  • 85
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Fetal Ammon's Horn Transplants Improve Acquisition of a Radial Arm Maze and a Low-Rate Operant Schedule in Trimethyltin-Treated Rats

Freeman, James N., Baisden, Ronald H., Woodruff, Michael L. 01 January 1995 (has links)
The results of previous studies indicated that block grafts of fetal hippocampal tissue made into cavities produced by aspiration lesions of the hippocampus in rats given the neurotoxin trimethyltin (TMT) significantly worsened the TMT-induced deficit in water maze acquisition. The purpose of the present study was to test the hypothesis that a procedure for transplantation that produced less destruction to the host brain and resulted in transplants with less mass might produce recovery in a spatial learning task in TMT-exposed rats. Acquisition of an externally cued (spatial) version of the radial arm maze (RAM), an internally cued version of the RAM, and of a differential reinforcement of low rate (DRL) operant schedule was assessed in normal rats, rats given TMT, and rats given TMT and stereotaxic implants of either fetal Ammon's horn or entorhinal cortex. The rats receiving Ammon's horn transplants made significantly fewer reentries into the baited arms in both maze configurations and fewer reentries into the nonbaited arms in the spatial RAM than rats in the TMT-only and TMT/entorhinal cortex transplant groups. The rats receiving transplants of Ammon's horn made significantly fewer responses and received more reinforcements during training on the DRL-20 schedule than rats receiving just TMT or rats receiving TMT and transplants of fetal entorhinal cortex. These results support the proposal that transplantation procedures that cause less damage to the host brain and result in transplants that do not occupy a large extent of the ventricular space increase the probability of behavioral recovery.
252

Neurogenesis Within the Hippocampus After Chronic Methylphenidate Exposure

Oakes, Hannah V., DeVee, Carley E., Farmer, Brandon, Allen, Serena A., Hall, Alexis N., Ensley, Tucker, Medlock, Kristen, Hanley, Angela, Pond, Brooks B. 14 February 2019 (has links)
Methylphenidate is a psychostimulant used to treat attention deficit hyperactivity disorder. Neurogenesis occurs throughout adulthood within the dentate gyrus of the hippocampus and can be altered by psychoactive medications; however, the impact of methylphenidate on neurogenesis is not fully understood. We investigated the effects of chronic low (1 mg/kg) and high (10 mg/kg) intraperitoneal doses of methylphenidate on neurogenesis in mouse hippocampus following 28 days and 56 days of treatment. Interestingly, methylphenidate, at both doses, increased neurogenesis. However, if methylphenidate treatment was not continued, the newly generated cells did not survive after 28 days. If treatment was continued, the newly generated neurons survived only in the mice receiving low-dose methylphenidate. To investigate the mechanism for this effect, we examined levels of proteins linked to cell proliferation in the hippocampus, including brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), tropomyosin receptor kinase B (TrkB), and beta-catenin. BDNF or GDNF levels were not significantly different between groups. However, hippocampal VEGF, TrkB, and beta-catenin were significantly increased in mice receiving low-dose methylphenidate for 28 days compared to controls. Interestingly, high-dose methylphenidate significantly decreased beta-catenin after 28 days and decreased VEGF, beta-catenin, and TrkB after 56 days compared to controls. Thus, low-dose methylphenidate appears to increase cell proliferation and cell survival in the hippocampus, and these effects may be mediated by increase in VEGF, TrkB, and beta-catenin. While high dose methylphenidate may initially increase neuronal proliferation, newly generated neurons are unable to survive long-term, possibly due to decrease in VEGF, TrkB and beta-catenin.
253

Theroles of the hippocampus and prefrontal cortex during visual long-term memory:

Jeye, Brittany M. January 2019 (has links)
Thesis advisor: Scott D. Slotnick / We are able to consciously remember an incredible amount of information for long periods of time (Brady et al., 2008, 2013). Furthermore, we often think about our memories in terms of how successful we are in retrieving them, such as vividly recalling the smell of your grandmother’s cooking. However, we can also identify the times when we have forgotten information, such as misremembering the name of an acquaintance or misplacing your car keys. Such instances of forgetting have been suggested to be caused by inhibitory processes acting on associated information, such as the inhibitory processing shown in retrieval-induced forgetting where the retrieval of specific items leads to forgetting related information (Anderson et al., 2004; Wimber et al., 2015). Thus, long-term memory is said to rely on both accurately retrieving specific details and inhibiting potentially distracting information. In Chapter 1, I demonstrate that specificity of long-term memory depends on inhibiting related information through a series of behavioral experiments investigating item memory for faces and abstract shapes. In Chapter 2 and Chapter 3, I examine the neural regions associated with long-term memory specificity and inhibitory processing by focusing on the functional roles of the hippocampus and the prefrontal cortex, two key regions associated with long-term memory. In Chapter 2, I provide evidence that the hippocampus is associated with memory specificity by demonstrating that distinct regions of the hippocampus are associated with memory for different visual field locations. Furthermore, I provide evidence that the hippocampus operates in continuous manner during recollection (i.e., conscious retrieval of details). In Chapter 3, I demonstrate that the prefrontal cortex can inhibit both the hippocampus and language processing regions during retrieval of distracting information during episodic and semantic memory, respectively. / Thesis (PhD) — Boston College, 2019. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Psychology.
254

Measuring Acute Effects of Aluminum Chloride Exposures on the Adult Male Rat Hippocampus Using Neuro-electrophysiology and Biochemical Assays

Ethridge, Victoria Taryn 11 June 2019 (has links)
No description available.
255

NMDA receptor activity is necessary for long-term memory in the non-spatial, hippocampal-dependent, social transmission of food preference task

Roberts, Michael J., 1973- January 2000 (has links)
No description available.
256

Untersuchung des Einflusses verschiedener Lebenserfahrungen und unterschiedlicher Serotoninhomöostase auf die Neuromorphologie von Pyramidenzellen der CA3-Region des Hippocampus in Mäusen / Investigation of the influence of different life histories and varying serotonin homeostasis on the neuromorphology of pyramidal cells in hippocampal Cornu ammonis sector 3 in mice

Weber, Tanja January 2022 (has links) (PDF)
Chronischer Stress hat negative Folgen, die sich im Verhalten und auf neuronaler Ebene äußern können. Als besonders stressempfindlich gelten die Neurone der dritten Region des hippocampalen Ammonshorns CA3. Sie reagieren auch im bereits ausgereiften Zustand noch sehr sensibel auf äußere Einflüsse, was als neuronale Plastizität bezeichnet wird. Sie erfahren unter anderem durch Stress und Serotonin morphologische und funktionelle Veränderungen. Serotonin-Transporter wahren das Serotonin-Gleichgewicht, indem sie dessen Wirkung schließlich durch Wiederaufnahme in die Zellen beenden. Polymorphismen, also verschiedene Gen-Varianten, bedingen Unterschiede in der Zahl der verfügbaren Transporter. Dieses Wechselspiel zwischen Gen-Varianten des Serotonin-Transporters und Stress wurde an Serotonin-Transporter-Knockout-Mäusen untersucht. Einige Mäuse erfuhren bereits früh im Leben Stress, der entweder anhielt oder im späteren Leben positiven Erfahrungen wich; weitere Mäuse hingegen machten in frühen Lebensabschnitten positive Erfahrungen, die sich später entweder fortsetzten oder durch Stresserfahrungen ersetzt wurden. Nach Durchführung von Verhaltenstests wurde zudem in deren Golgi-imprägnierten Gehirnen die Morphologie der Apikaldendriten von CA3-Kurzschaft-Pyramidenzellen lichtmikroskopisch untersucht und in 3D-Computermodellen abgebildet. Aufgrund regionaler Eigenheiten innerhalb von CA3 wurden diese Neurone verschiedenen Subpopulationen zugeordnet. Tatsächlich konnten mithilfe der Kombination aus vier verschiedenen Lebensgeschichten und drei unterschiedlichen Serotonin-Transporter-Genotypen Unterschiede in der Morphologie der CA3-Pyramidenzellen zwischen den einzelnen Gruppen festgestellt werden. Ohne Stresserleben zeigten sich die Neurone meist signifikant verzweigter; nach Stresserleben zeigten sich, zumindest in einer bestimmten Subpopulation, signifikante Verminderungen der Spines. Mäuse mit zwei oder einem wildtypischen Serotonin-Transporter-Allel und ausschließlich späten aversiven Erfahrungen hatten signifikant längere Apikaldendriten als die Referenz mit zwei wildtypischen Allelen und ohne Stresserfahrung; homozygot Serotonin-Transporter-defiziente Mäuse der gleichen Lebensgeschichte hatten zur Referenz signifikant verkürzte Apikaldendriten. Diese Ergebnisse lassen vermuten, dass Stress in Verbindung mit genetisch bedingt geringen Mengen des Serotonin-Transporters durchaus eine erhöhte Vulnerabilität für psychische Erkrankungen bedingen könnte, aber dass ausschließlich späte Stresserfahrungen bei höheren Mengen des Serotonin-Transporters auch protektiv wirken könnten. / Chronic stress has a negative impact on behavior and neuronal networks. The neurons of Cornu ammonis sector 3 (CA3) of the hippocampus are shown to be very susceptible to stress. Even when mature, they still react sensitively to their environment, which is called neuronal plasticity. Stress and serotonin tend to influence the neurons morphologically as well as functionally. Serotonin transporters preserve the serotonin homeostasis by terminating the serotonergic effects on respective receptors through reuptake into the surrounding cells. Polymorphisms, several variants of the human serotonin transporter gene, account for differences in the numbers of available serotonin transporters. This interplay between variants of the serotonin transporter gene and stress has been investigated by using the animal model of serotonin transporter knockout mice. Life history of some of these mice started with stressful events that either persisted or was replaced by positive experiences in their later life; the other mice had a pleasant early life that in their late phase of life either went on or was interrupted and henceforth contained stressful incidents. Behavioral tests took place. Afterwards, the Golgi impregnated mouse brains were light microscopically studied for the morphology of the apical dendrites of CA3 short shaft pyramidal cells, which were then transferred into digital 3D models. Due to regional differences in CA3 associated with a large variance in the morphology of these neurons located there, investigated neurons were subdivided into various subpopulations. With the combination of four different life histories and three different serotonin transporter genotypes, differences in the morphology of the CA3 pyramidal cells between the individual groups could be determined. Without the experience of stress, the neurons mostly had significantly more nodes; after stress, the spines were shown to be significantly reduced in at least one of the subpopulations. Mice with two or one wildtype serotonin transporter allele and experiencing only late aversive events had significantly longer apical dendrites than the reference with two wildtype alleles and experiencing no stress at all; homozygous serotonin transporter knockout mice of the same life history had significantly shorter apical dendrites compared to the reference. According to these findings, it can be supposed that stress in conjunction with genetically caused low amounts of the serotonin transporter can indeed increase the vulnerability for psychological disorders but that only late experiences of stress in combination with higher amounts of the serotonin transporter could also have a protective effect.
257

Insulin Inhibits Pyramidal Neurons in Hippocampal Slices

Palovcik, Reinhard A., Phillips, M. Ian, Kappy, Michael S., Raizada, Mohan K. 20 August 1984 (has links)
Recent studies have confirmed the presence of insulin receptors in the rat brain although their function has still not been well defined. The present study explores the possibility that insulin receptors in the brain can alter or contribute to central neurotransmission. Insulin caused a dose-dependent inhibition of hippocampal pyramidal neurons. The pattern of inhibition mirrored the binding kinetics of insulin in the hippocampus. Two related peptides, proinsulin and desoctapeptide insulin, had neuronal effects consistent with their binding to insulin receptors in the brain. Proinsulin was effective in doses 30-fold greater than insulin, whereas desoctapeptide insulin had little or no effect. These observations indicate that the inhibitory effect of insulin in this tissue may be insulin receptor-mediated and support a previously suggested functional role of insulin in the central nervous system.
258

A Parametric Investigation of Pattern Separation Processes in the Medial Temporal Lobe

Motley, Sarah E. 11 February 2012 (has links) (PDF)
The hippocampus is thought to be involved in memory formation and consolidation, with computational models proposing the process of pattern separation as a means for encoding overlapping memories. Previous research has used semantically related targets and lures to investigate hippocampal responses to mnemonic interference. Here, we attempted to define the response function of the hippocampus and its inputs during pattern separation by parametrically varying target-lure similarity in a continuous recognition task. We also investigated the effect of task demands (intentional versus incidental encoding) on pattern separation processes. We collected functional magnetic resonance imaging (fMRI) data while participants were shown a series of objects. In the intentional paradigm, participants identified objects as "new" (novel stimuli), "old" (exact repetitions), or "rotated" (previously seen objects that were subsequently rotated by varied degrees). In the incidental paradigm, participants were shown the same stimuli but identified objects as "toy" or "not toy". Activation in the hippocampus was best fit with a power function, consistent with predictions made by computational models of pattern separation processes in the hippocampus. The degree of pattern separation was driven by the information most relevant to the task—pattern separation was seen in the left hippocampus when semantic information was more important to the task and seen in the right hippocampus when spatial information was more important. We also present data illustrating that top-down processes modulate activity in the ventral visual processing stream.
259

The effects of acute ethanol on cholinergic activity in the hippocampus and nucleus accumbens of rat brain

Gongwer, Cameron R. January 1992 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
260

ARHGAP4 is a spatially regulated RhoGAP that inhibits NIH/3T3 cell migration and dentate granule cell axon outgrowth

Vogt, Daniel L. 06 July 2007 (has links)
No description available.

Page generated in 0.0705 seconds