• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 408
  • 116
  • 51
  • 45
  • 22
  • 17
  • 15
  • 12
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 837
  • 174
  • 156
  • 141
  • 141
  • 139
  • 122
  • 107
  • 106
  • 102
  • 100
  • 91
  • 80
  • 79
  • 79
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

A Bioinformatics Study of Human Transcriptional Regulation

Ameur, Adam January 2008 (has links)
Regulation of transcription is a central mechanism in all living cells that now can be investigated with high-throughput technologies. Data produced from such experiments give new insights to how transcription factors (TFs) coordinate the gene transcription and thereby regulate the amounts of proteins produced. These studies are also important from a medical perspective since TF proteins are often involved in disease. To learn more about transcriptional regulation, we have developed strategies for analysis of data from microarray and massively parallel sequencing (MPS) experiments. Our computational results consist of methods to handle the steadily increasing amount of data from high-throughput technologies. Microarray data analysis tools have been assembled in the LCB-Data Warehouse (LCB-DWH) (paper I), and other analysis strategies have been developed for MPS data (paper V). We have also developed a de novo motif search algorithm called BCRANK (paper IV). The analysis has lead to interesting biological findings in human liver cells (papers II-V). The investigated TFs appeared to bind at several thousand sites in the genome, that we have identified at base pair resolution. The investigated histone modifications are mainly found downstream of transcription start sites, and correlated to transcriptional activity. These histone marks are frequently found for pairs of genes in a bidirectional conformation. Our results suggest that a TF can bind in the shared promoter of two genes and regulate both of them. From a medical perspective, the genes bound by the investigated TFs are candidates to be involved in metabolic disorders. Moreover, we have developed a new strategy to detect single nucleotide polymorphisms (SNPs) that disrupt the binding of a TF (paper IV). We further demonstrated that SNPs can affect transcription in the immediate vicinity. Ultimately, our method may prove helpful to find disease-causing regulatory SNPs.
382

Aberrant epigenetics in the molecular pathogenesis of human acute myeloid leukemia

Scott, Stuart Alexander 30 May 2005 (has links)
Promoter hypermethylation mediated gene silencing is a frequent epigenetic finding in many cancers that affects genes known to have important roles in several aspects of cell biology. Hematological malignancies have been reported to harbor multiple genes aberrantly silenced by promoter hypermethylation and as a result, cytosine analogs known to inhibit the DNA methylation machinery are currently being evaluated in clinical trials. As such, the general goal of this thesis was to identify genes silenced by promoter hypermethylation in human acute myeloid leukemia (AML) and to study the mechanism of promoter hypermethylation mediated gene silencing. Interestingly, the cyclin dependent kinase inhibitor p15 was found to be methylated at a high frequency in AML patients and cell lines in association with a lack of detectable p15 mRNA. Treatment with the cytosine analog 5-Aza-2-deoxycytidine (5-Aza-dC) in vitro resulted in promoter demethylation and p15 mRNA re-expression, which was associated with a release of a transcriptionally repressive complex at the p15 promoter. Importantly, 5-Aza-dC treatment also reversed specific histone amino-terminal modifications at the p15 promoter which are normally associated with transcriptionally inactive chromatin regions, implicating chromatin remodeling in promoter hypermethylation mediated gene silencing. The recently discovered DNA methylation inhibitor, zebularine considered more stable than 5-Aza-dC was also able to reconstitute p15 mRNA in vitro in association with promoter demethylation, regional enrichment of histone acetylation, and growth inhibition. To identify novel genes silenced by promoter hypermethylation in AML, cDNA microarray analysis was employed following in vitro pharmacological inhibition of DNA methylation and histone deacetylation. Of note, four genes from the metallothionein family of cysteine rich small molecules were consistently upregulated following drug treatment and further evaluation identified the gene MT1H to be hypermethylated at a high frequency in AML patients and cell lines. Taken together, the data suggests that aberrant promoter hypermethylation mediated gene silencing occurs in multiple genes from different gene families during the molecular pathogenesis of human AML. Furthermore, the mechanism of promoter methylation mediated transcriptional silencing acts in concert with specific histone modifications which, importantly, can be reversed by treatment with pharmacological inhibitors of DNA methylation.
383

Transcriptional regulation of SRC by the SP family of factors and histone deacetylase inhibitors

Ellis, Danielle J. P. 05 July 2007 (has links)
The SRC gene encodes pp60c-Src, a 60 kDa non-receptor tyrosine kinase that is frequently activated and/or overexpressed in many cancers including colon cancer. In a subset of colon cancer cell lines, it has been shown, that the overexpression of c-Src can be explained, in part, by the transcriptional activation of the SRC gene. As a result, the general goal of this thesis was to further characterize how SRC is transcriptionally regulated in human cancer cell lines. Two highly dissimilar promoters, the housekeeping-like SRC1A promoter, as well as the HIF-1Ñ regulated tissue-specific SRC1Ñ promoter, regulate SRC expression. hnRNP K and the Sp family of factors regulate the SRC1A promoter; however, the true impact of Sp3 on SRC1A activity was not understood. In this thesis, a comprehensive analysis of the effect of Sp3 on SRC1A activity was performed. Physiologically, Sp3 exists as four translational isoforms that, in part, dictate the activation potential of Sp3. In general, the longer forms of Sp3 were modest transcriptional activators of the SRC1A promoter whereas the shorter forms were unable to activate the SRC1A promoter. An analysis of all Sp3 isoforms identified that the shorter Sp3 isoforms could be converted into transcriptional activators of SRC1A if the SUMOylation of a critical lysine residue within the inhibitory domain was prevented. Conversely, SUMOylation of the same isoform had little effect on the activation potential of the longer Sp3 isoforms at the SRC1A promoter. These results suggest that transcriptional activation by Sp3 is promoter context-, isoform- and modification-dependent.<p>SRC is transcriptionally repressed by histone deacetylase inhibitors (HDIs) and despite unsuccessful studies attempting to identify HDI-responsive elements within the SRC promoter regions none could be identified. This finding also suggests that histone deacetylases (HDACs) may be required for SRC expression. Historically, it was believed that HDIs act at the histone level to alter chromatin dynamics through the inactivation of HDACs to result in histone hyperacetylation and increased transcriptional activation. As such, a systematic investigation of the changes in histone H3 and H4 acetylation status at the transcriptionally repressed SRC promoter regions and the transcriptionally activated p21WAF1 promoter region was performed. The p21WAF1 promoter was used as control in this study as p21WAF1 is a classical example of a gene transcriptionally activated by HDIs. Interestingly, similar changes in histone acetylation at the p21WAF1 promoter and both SRC promoter regions were observed. Upon closer examination of acetylation changes at discreet histone residues, it was observed that in the rare case that a particular residue was differentially acetylated upon treatment at the promoter regions analyzed, the SRC1Ñ and p21WAF1 promoter regions demonstrated more similar changes in acetylation as compared to SRC1A. Taken together, these results suggest that histone acetylation status is not an accurate indicator of transcriptional activity following HDI treatment. To further investigate HDI-mediated SRC repression, RNA Pol. II occupancy at the promoter and regions downstream of the promoter were assessed. Despite the continued occupancy of RNA Pol. II at the promoter regions, RNA Pol. II was lost from the 3¡¦ UTR upon treatment with HDIs. These findings suggest that RNA Pol. II . may be sequestered at the promoter regions upon treatment with HDIs possibly as a result of impeded transcription initiation and/or elongation. Further analysis of the phosphorylation status of RNA Pol. II identified that transcriptional initiation was indeed occurring despite HDI treatment; however, productive transcriptional elongation could not be confirmed thus suggesting a role for abrogated elongation in HDI mediated SRC repression. Complimentary analysis of the effects of HDACs on SRC expression suggested that while class I HDACs abrogated SRC expression, class II HDACs were required for the maintenance of SRC transcript levels in a promoter-independent fashion. Together, these results provide the basis for a model whereby HDIs repress SRC transcriptional expression through the inhibition of class II HDAC activity to eventually result in curtailed SRC transcriptional elongation.
384

The Spatial and Temporal Regulatory Code of Transcription Initiation in Drosophila melanogaster

Rach, Elizabeth Ann January 2010 (has links)
<p>Transcription initiation is a key component in the regulation of gene expression. Recent high-throughput sequencing techniques have enhanced our understanding of mammalian transcription by revealing narrow and broad patterns of transcription start sites (TSSs). Transcription initiation is central to the determination of condition specificity, as distinct repertoires of transcription factors (TFs) that assist in the recruitment of the RNA polymerase II to the DNA are present under different conditions. However, our understanding of the presence and spatiotemporal architecture of the promoter patterns in the fruit fly remains in its infancy. Nucleosome organization and transcription initiation have been considered hallmarks of gene expression, but their cooperative regulation is also not yet understood.</p> <p>In this work, we applied a hierarchical clustering strategy on available 5' expressed sequence tags (ESTs), and developed an improved paired-end sequencing strategy to explore the transcription initiation landscape of the D.melanogaster genome. We distinguished three initiation patterns: 'Peaked or Narrow Peak TSSs&#8219;, 'Broad Peak TSSs&#8219;, and 'Broad TSS cluster groups or Weak Peak TSSs&#8219;. The promoters of peaked TSSs contained the location specific sequence elements, and were bound by TATA Binding Protein (TBP), while the promoters of broad TSS cluster groups were associated with non-location-specific elements, and were bound by the TATA-box related Factor 2 (TRF2).</p> <p>Available ESTs and a tiling array time series enabled us to show that TSSs had distinct associations to conditions, and temporal patterns of embryonic activity differed across the majority of alternative promoters. Peaked promoters had an association to maternally inherited transcripts, and broad TSS cluster group promoters were more highly associated to zygotic utilization. The paired-end sequencing strategy identified a large number of 5' capped transcripts originating from coding exons that were unlikely the result of alternative TSSs, but rather the product of post-transcriptional modifications.</p> <p>We applied an innovative search program called FREE to embryo, head, and testes specific core promoter sequences and identified 123 motifs: 16 novel and 107 supported by other motif sources. Motifs in the embryo specific core promoters were found at location hotspots from the TSS. A family of oligos was discovered that matched the Pause Button motif that is associated with RNA pol II stalling.</p> <p>Lastly, we analyzed nucleosome organization, chromatin structure, and insulators across the three promoter patterns in the fruit fly and human genomes. The WP promoters showed higher associations with H2A.Z, DNase Hypersensitivity Sites (DHS), H3K4 methylations, and Class I insulators CTCF/BEAF32/CP190. Conversely, NP promoters had higher associations with polII and GAF binding. BP promoters exhibited a combination of features from both promoter patterns. Our study provides a comprehensive map of initiation sites and the conditions under which they are utilized in D. melanogaster. The presence of promoter specific histone replacements, chromatin modifications, and insulator elements support the existence of two divergent strategies of transcriptional regulation in higher eukaryotes. Together, these data illustrate the complex regulatory code of transcription initiation.</p> / Dissertation
385

The Role of Chromatin Structure and Histone Modifications in Gene Silencing at the Ribosomal DNA Locus in Saccharomyces cerevisiae

Williamson, Kelly M. 2011 May 1900 (has links)
One of the fundamental questions in science is how chromatin transitions from actively transcribed euchromatin to silent heterochromatin, and what factors affect this transition. One area of my research has focused on understanding the differences in the chromatin structure of active and silent regions in the ribosomal DNA locus (rDNA), a heterochromatin region in S. cerevisiae. Secondly, I have focused on understanding a histone methyltransferase Set1, which is involved in both euchromatin and heterochromatin regions. To distinguish actively transcribed open regions of chromatin from silent and closed regions of chromatin, we have expressed a DNA methyltransferase M.CviPI in vivo to utilize its accessibility to GpC sites. We have used this technique to study changes in nucleosome positioning within the NTS2 region of the rDNA in two cases: as a result of a silencing defect caused by the loss of Sir2, a histone deacetylase involved in silencing at the rDNA, and as an indicator of active transcription by RNA Pol I. Using this technique, we observed differences between open and closed chromatin structure by changes in nucleosome positioning within NTS2. Additionally, we have observed the presence of bound factors within the 35S rRNA gene promoter that are unique to actively transcribed genes. The second area of my research focused on the protein methyltransferase Set1 that mono-, di-, and trimethylates lysine 4 of histone H3 (H3K4) utilizing the methyl group from S-adenosyl methionine (SAM). Set1 is part of a multi protein complex called COMPASS (Complex associated with Set1), and is associated with both actively transcribed and silent regions. Thirty mutants of Set1 were made within the SET domain to learn more about the catalytic mechanism of Set1. The crystal structures of human SET domain proteins, as well as sequence alignments and a random mutagenesis of yeast Set1, were used to identify conserved amino acids in the SET domain of Set1. Mutants were analyzed for their effect on histone methylation in vivo, silencing of RNA Pol II transcription within the rDNA, suppression of ipl1-2, and COMPASS complex formation. Our results show that trimethylated H3K4 is required for silencing of RNA Pol II transcription at the rDNA. Overall, we have shown the importance of tyrosine residues in SET domain proteins. To summarize, my research has strived to understand chromatin structure and the factors that affect the transition between euchromatin and heterochromatin.
386

Epigenetic regulation of the human genome by transposable elements

Huda, Ahsan 07 July 2010 (has links)
Nearly one half of the human genome is composed of transposable elements (TEs). Once dismissed as 'selfish' or 'junk' DNA, TEs have also been implicated in a numerous functions that serve the needs of their host genome. I have evaluated the role of TEs in mediating the epigenetic mechanisms that serve to regulate human gene expression. These findings can be broadly divided into two major mechanisms by which TEs affect human gene expression; by modulating nucleosome binding in the promoter regions and by recruiting epigenetic histone modifications that enable them to serve as promoters and enhancers. Thus. the studies encompassed in this thesis elucidate the contributions of TEs in epigenetically regulating human gene expression on a global as well as local scale.
387

Rôle de la nucléoline et de macroH2A dans la structure et la fonction du nucléole

Ivaldi, Corinne 23 February 2007 (has links) (PDF)
Le nucléole est le lieu où débute la synthèse des ribosomes. Sa structure est fortement corrélée à la transcription des gènes ribosomiques. La régulation de l'expression des gènes ribosomiques est une étape importante de la biogenèse des ribosomes. L'objectif de ce travail a été de définir et d'ouvrir des voies méthodologiques pour mettre en évidence le rôle de macroH2A et de la nucléoline dans la régulation de l'expression des gènes ribosomiques. MacroH2A est pour l'instant le seul variant d'histone présent dans le nucléole. La nucléoline est une des protéines majoritaires du nucléole. La première partie de notre étude a porté sur un système cellulaire original celui de la carpe dont l'adaptation aux conditions climatiques (hiver et été) requiert des changements importants dans l'expression génique. Ainsi la répression de l'expression des ARN ribosomiques, associée à une baisse d'activité cellulaire, est concomitante avec (i) une déstructuration du nucléole, (ii) une augmentation de la concentration de macroH2A et de la nucléoline et (iii) une augmentation de la méthylation d'îlots CpG. Il existe donc une corrélation entre l'expression des gènes ribosomiques et le niveau d'expression de macroH2A. Pour analyser la distribution de macroH2A sur une fibre de chromatine, nous avons utilisé la technique d'étirement de la chromatine. Nous avons montré que macroH2A co-localise avec la tri-méthylation de la lysine 9 de l'histone H3 qui est un marqueur de l'hétérochromatine. De plus, la distribution de macroH2A est périodique suggérant un rôle de cette histone dans une organisation particulière de la chromatine. Enfin, nous avons développé au laboratoire un système cellulaire reposant sur l'inhibition de la nucléoline par RNAi dans des cellules HeLa. Les conséquences de l'inhibition de la nucléoline sont multiples : une diminution de la synthèse de l'ARN pré-ribosomique accompagnée d'une perturbation de la structure du nucléole et d'un arrêt du cycle cellulaire en mitose pouvant conduire à l'apoptose. La nucléoline est donc largement impliquée dans la régulation de l'expression des gènes ribosomiques.
388

Etude de modifications épigénétiques corrélées à l'expression du gène MDR1 et à la texture nucléaire dans des cellules de carcinome pulmonaire H69 sensibles et résistantes à la chimiothérapie

El Khoury, Victoria Dufer, Jean. January 2006 (has links) (PDF)
Reproduction de : Thèse doctorat : Pharmacie. Biologie cellulaire et moléculaire : Reims : 2006. / Titre provenant de l'écran-titre. Bibliogr. p.198-229.
389

Etude du rôle de la balance HAT/HDAC dans les phénomènes de neurodégénérescence Mise en évidence du rôle neuroprotecteur de CBP et des effets thérapeutiques des inhibiteurs de HDAC sur un modèle murin de sclérose latérale amyotrophique /

Rouaux, Caroline Boutillier, Anne-Laurence. January 2008 (has links) (PDF)
Thèse doctorat : Sciences du vivant. Aspects Moléculaires et Cellulaires de la Biologie : Strasbourg 1 : 2006. / Thèse soutenue sur un ensemble de travaux. Titre provenant de l'écran-titre. Bibliogr. 34 p.
390

Epigenetic Modifiers to Augment the Immunogenicity of Chronic Lymphocytic Leukemia

Dubovsky, Jason A. 01 January 2013 (has links)
Cancer cells employ a litany of immunosuppressive and immunevasive strategies to avoid detection and elimination by the various arms of the innate and adaptive immune system. Many hematologic and solid tumors progressively develop a specialized microenvironment which promotes tissue restructuring inflammation while masking the immune signature of the tumor cells themselves. Chronic lymphocytic leukemia, a malignancy of mature B lymphocytes must constantly balance on the precipice of immune recognition. A mature antigen presenting cell themselves, CLL clonal growth is dependent on the very interactions which, if effective, could potentially lead to their demise. To circumvent this, CLL clones set up unique signatures which promote immune recognition yet provide diversionary signals to the remaining immune armament resulting in profound immune dysfunction. While the aforementioned immune dysfunction is widespread, the B cell and T cell repertoire are severely impaired during leukemic progression. The lack of healthy B cells due to displacement by malignant B cells results in the obvious loss of an important antigen presenting cell as well as antibody-based immunity. Additionally, deficient interactions with T cells result in anergy and the preponderance of improperly polarized T lymphocytes which are impotent to eliminate both pathogens and leukemic cells. The result of such severe immune dysfunction is chronic infection and progressive disease which is the primary cause of death in CLL patients. Our research was focused on the premise that alleviating immune dysfunction and providing immunotherapeutic tools will significantly benefit CLL therapy. To this end we developed methods to improve the cellular interaction between CLL cells and T cells a critical step towards improving the antigen presentation capacity of the diseased B cell repertoire. We also identified a therapeutic strategy which can revert the anergic or improperly polarized state of T cells already in circulation allowing those cells to more effectively perform the effector functions necessary to fight pathogenic attack and malignant transformation. Finally, we identified a number of novel targets in CLL which could be used in a vaccinate-induce method to license the elimination of CLL cells by the patient's adaptive immune system. To achieve our goals we utilized a relatively new class of drugs called epigenetic modifiers which specifically alter the chromatin structure resulting in novel genetic signatures which are heritable over cellular generations. The unique properties of these drugs allow for the elicitation of suppressed genetic programs which, when properly controlled, have the potential to reassert healthy lymphocyte functions. Our studies provide a comprehensive therapeutic initiative which, by simultaneously alleviating the major causes of immune dysfunction in addition to facilitating the use of novel active immunotherapeutic strategies could potentially impact clinical therapy for CLL.

Page generated in 0.0375 seconds