Spelling suggestions: "subject:"dreidimensionale"" "subject:"eindimensionale""
11 |
High Dimensional Fast Fourier Transform Based on Rank-1 Lattice SamplingKämmerer, Lutz 21 November 2014 (has links)
We consider multivariate trigonometric polynomials with frequencies supported on a fixed but arbitrary frequency index set I, which is a finite set of integer vectors of length d. Naturally, one is interested in spatial
discretizations in the d-dimensional torus such that
- the sampling values of the trigonometric polynomial at the nodes of this spatial discretization uniquely determines the trigonometric polynomial,
- the corresponding discrete Fourier transform is fast realizable, and
- the corresponding fast Fourier transform is stable.
An algorithm that computes the discrete Fourier transform and that needs a computational complexity that is bounded from above by terms that are linear in the maximum of the number of input and output data up to some logarithmic factors is called fast Fourier transform. We call the fast Fourier transform stable if the Fourier matrix of the discrete Fourier transform has a condition number near one and the fast algorithm does not corrupt this theoretical stability.
We suggest to use rank-1 lattices and a generalization as spatial discretizations in order to sample multivariate trigonometric polynomials and we develop construction methods in order to determine reconstructing sampling sets, i.e., sets of sampling nodes that allow for the unique, fast, and stable reconstruction of trigonometric polynomials. The methods for determining reconstructing rank-1 lattices are component{by{component constructions, similar to the seminal methods that are developed in the field of numerical integration. During this thesis we identify a component{by{component construction of reconstructing rank-1 lattices that allows for an estimate of the number of sampling nodes M
|I|\le M\le \max\left(\frac{2}{3}|I|^2,\max\{3\|\mathbf{k}\|_\infty\colon\mathbf{k}\in I\}\right)
that is sufficient in order to uniquely reconstruct each multivariate trigonometric polynomial with frequencies supported on the frequency index set I. We observe that the bounds on the number M only depends on the number of frequency indices contained in I and the expansion of I, but not on the spatial dimension d. Hence, rank-1 lattices are suitable spatial discretizations in arbitrarily high dimensional problems.
Furthermore, we consider a generalization of the concept of rank-1 lattices, which we call generated sets. We use a quite different approach in order to determine suitable reconstructing generated sets. The corresponding construction method is based on a continuous optimization method.
Besides the theoretical considerations, we focus on the practicability of the presented algorithms and illustrate the theoretical findings by means of several examples.
In addition, we investigate the approximation properties of the considered sampling schemes. We apply the results to the most important structures of frequency indices in higher dimensions, so-called hyperbolic crosses and demonstrate the approximation properties by the means of several examples that include the solution of Poisson's equation as one representative of partial differential equations.
|
12 |
Tensor product methods in numerical simulation of high-dimensional dynamical problemsDolgov, Sergey 20 August 2014 (has links)
Quantification of stochastic or quantum systems by a joint probability density or wave function is a notoriously difficult computational problem, since the solution depends on all possible states (or realizations) of the system.
Due to this combinatorial flavor, even a system containing as few as ten particles may yield as many as $10^{10}$ discretized states.
None of even modern supercomputers are capable to cope with this curse of dimensionality straightforwardly, when the amount of quantum particles, for example, grows up to more or less interesting order of hundreds.
A traditional approach for a long time was to avoid models formulated in terms of probabilistic functions,
and simulate particular system realizations in a randomized process.
Since different times in different communities, data-sparse methods came into play.
Generally, they aim to define all data points indirectly, by a map from a low amount of representers,
and recast all operations (e.g. linear system solution) from the initial data to the effective parameters.
The most advanced techniques can be applied (at least, tried) to any given array, and do not rely explicitly on its origin.
The current work contributes further progress to this area in the particular direction: tensor product methods for separation of variables.
The separation of variables has a long history, and is based on the following elementary concept: a function of many variables may be expanded as a product of univariate functions.
On the discrete level, a function is encoded by an array of its values, or a tensor.
Therefore, instead of a huge initial array, the separation of variables allows to work with univariate factors with much less efforts.
The dissertation contains a short overview of existing tensor representations: canonical PARAFAC, Hierarchical Tucker, Tensor Train (TT) formats, as well as the artificial tensorisation, resulting in the Quantized Tensor Train (QTT) approximation method.
The contribution of the dissertation consists in both theoretical constructions and practical numerical algorithms for high-dimensional models, illustrated on the examples of the Fokker-Planck and the chemical master equations.
Both arise from stochastic dynamical processes in multiconfigurational systems, and govern the evolution of the probability function in time.
A special focus is put on time propagation schemes and their properties related to tensor product methods.
We show that these applications yield large-scale systems of linear equations,
and prove analytical separable representations of the involved functions and operators.
We propose a new combined tensor format (QTT-Tucker), which descends from the TT format (hence TT algorithms may be generalized smoothly), but provides complexity reduction by an order of magnitude.
We develop a robust iterative solution algorithm, constituting most advantageous properties of the classical iterative methods from numerical analysis and alternating density matrix renormalization group (DMRG) techniques from quantum physics.
Numerical experiments confirm that the new method is preferable to DMRG algorithms.
It is as fast as the simplest alternating schemes, but as reliable and accurate as the Krylov methods in linear algebra.
|
13 |
Tail behaviour analysis and robust regression meets modern methodologiesWang, Bingling 11 March 2024 (has links)
Diese Arbeit stellt Modelle und Methoden vor, die für robuste Statistiken und ihre Anwendungen in verschiedenen Bereichen entwickelt wurden.
Kapitel 2 stellt einen neuartigen Partitionierungs-Clustering-Algorithmus vor, der auf Expectiles basiert. Der Algorithmus bildet Cluster, die sich an das Endverhalten der Clusterverteilungen anpassen und sie dadurch robuster machen. Das Kapitel stellt feste Tau-Clustering- und adaptive Tau-Clustering-Schemata und ihre Anwendungen im Kryptowährungsmarkt und in der Bildsegmentierung vor. In Kapitel 3 wird ein faktorerweitertes dynamisches Modell vorgeschlagen, um das Tail-Verhalten hochdimensionaler Zeitreihen zu analysieren. Dieses Modell extrahiert latente Faktoren, die durch Extremereignisse verursacht werden, und untersucht ihre Wechselwirkung mit makroökonomischen Variablen mithilfe des VAR-Modells. Diese Methodik ermöglicht Impuls-Antwort-Analysen, Out-of-Sample-Vorhersagen und die Untersuchung von Netzwerkeffekten. Die empirische Studie stellt den signifikanten Einfluss von durch finanzielle Extremereignisse bedingten Faktoren auf makroökonomische Variablen während verschiedener Wirtschaftsperioden dar. Kapitel 4 ist eine Pilotanalyse zu Non Fungible Tokens (NFTs), insbesondere CryptoPunks. Der Autor untersucht die Clusterbildung zwischen digitalen Assets mithilfe verschiedener Visualisierungstechniken. Die durch CNN- und UMAP-Regression identifizierten Cluster werden mit Preisen und Merkmalen von CryptoPunks in Verbindung gebracht.
Kapitel 5 stellt die Konstruktion eines Preisindex namens Digital Art Index (DAI) für den NFT-Kunstmarkt vor. Der Index wird mithilfe hedonischer Regression in Kombination mit robusten Schätzern für die Top-10-Liquid-NFT-Kunstsammlungen erstellt. Es schlägt innovative Verfahren vor, nämlich Huberisierung und DCS-t-Filterung, um abweichende Preisbeobachtungen zu verarbeiten und einen robusten Index zu erstellen. Darüber hinaus werden Preisdeterminanten des NFT-Marktes analysiert. / This thesis provides models and methodologies developed on robust statistics and their applications in various domains. Chapter 2 presents a novel partitioning clustering algorithm based on expectiles. The algorithm forms clusters that adapt to the tail behavior of the cluster distributions, making them more robust. The chapter introduces fixed tau-clustering and adaptive tau-clustering schemes and their applications in crypto-currency market and image segmentation. In Chapter 3 a factor augmented dynamic model is proposed to analyse tail behavior of high-dimensional time series. This model extracts latent factors driven by tail events and examines their interaction with macroeconomic variables using VAR model. This methodology enables impulse-response analysis, out-of-sample predictions, and the study of network effects. The empirical study presents significant impact of financial tail event driven factors on macroeconomic variables during different economic periods. Chapter 4 is a pilot analysis on Non Fungible Tokens (NFTs) specifically CryptoPunks. The author investigates clustering among digital assets using various visualization techniques. The clusters identified through regression CNN and UMAP are associated with prices and traits of CryptoPunks. Chapter 5 introduces the construction of a price index called the Digital Art Index (DAI) for the NFT art market. The index is created using hedonic regression combined with robust estimators on the top 10 liquid NFT art collections. It proposes innovative procedures, namely Huberization and DCS-t filtering, to handle outlying price observations and create a robust index. Furthermore, it analyzes price determinants of the NFT market.
|
14 |
Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice Sampling / Multivariate Approximation und hochdimensionale dünnbesetzte schnelle Fouriertransformation basierend auf Rang-1-Gittern als OrtsdiskretisierungenVolkmer, Toni 18 July 2017 (has links) (PDF)
In this work, the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on arbitrary index sets of finite cardinality is considered, where rank-1 lattices are used as spatial discretizations. The approximation of multivariate smooth periodic functions by trigonometric polynomials is studied, based on a one-dimensional FFT applied to function samples. The smoothness of the functions is characterized via the decay of their Fourier coefficients, and various estimates for sampling errors are shown, complemented by numerical tests for up to 25 dimensions. In addition, the special case of perturbed rank-1 lattice nodes is considered, and a fast Taylor expansion based approximation method is developed.
One main contribution is the transfer of the methods to the non-periodic case. Multivariate algebraic polynomials in Chebyshev form are used as ansatz functions and rank-1 Chebyshev lattices as spatial discretizations. This strategy allows for using fast algorithms based on a one-dimensional DCT. The smoothness of a function can be characterized via the decay of its Chebyshev coefficients. From this point of view, estimates for sampling errors are shown as well as numerical tests for up to 25 dimensions.
A further main contribution is the development of a high-dimensional sparse FFT method based on rank-1 lattice sampling, which allows for determining unknown frequency locations belonging to the approximately largest Fourier or Chebyshev coefficients of a function. / In dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt.
Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen.
Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören.
|
15 |
Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice SamplingVolkmer, Toni 28 March 2017 (has links)
In this work, the fast evaluation and reconstruction of multivariate trigonometric polynomials with frequencies supported on arbitrary index sets of finite cardinality is considered, where rank-1 lattices are used as spatial discretizations. The approximation of multivariate smooth periodic functions by trigonometric polynomials is studied, based on a one-dimensional FFT applied to function samples. The smoothness of the functions is characterized via the decay of their Fourier coefficients, and various estimates for sampling errors are shown, complemented by numerical tests for up to 25 dimensions. In addition, the special case of perturbed rank-1 lattice nodes is considered, and a fast Taylor expansion based approximation method is developed.
One main contribution is the transfer of the methods to the non-periodic case. Multivariate algebraic polynomials in Chebyshev form are used as ansatz functions and rank-1 Chebyshev lattices as spatial discretizations. This strategy allows for using fast algorithms based on a one-dimensional DCT. The smoothness of a function can be characterized via the decay of its Chebyshev coefficients. From this point of view, estimates for sampling errors are shown as well as numerical tests for up to 25 dimensions.
A further main contribution is the development of a high-dimensional sparse FFT method based on rank-1 lattice sampling, which allows for determining unknown frequency locations belonging to the approximately largest Fourier or Chebyshev coefficients of a function. / In dieser Arbeit wird die schnelle Auswertung und Rekonstruktion multivariater trigonometrischer Polynome mit Frequenzen aus beliebigen Indexmengen endlicher Kardinalität betrachtet, wobei Rang-1-Gitter (rank-1 lattices) als Diskretisierung im Ortsbereich verwendet werden. Die Approximation multivariater glatter periodischer Funktionen durch trigonometrische Polynome wird untersucht, wobei Approximanten mittels einer eindimensionalen FFT (schnellen Fourier-Transformation) angewandt auf Funktionswerte ermittelt werden. Die Glattheit von Funktionen wird durch den Abfall ihrer Fourier-Koeffizienten charakterisiert und mehrere Abschätzungen für den Abtastfehler werden gezeigt, ergänzt durch numerische Tests für bis zu 25 Raumdimensionen. Zusätzlich wird der Spezialfall gestörter Rang-1-Gitter-Knoten betrachtet, und es wird eine schnelle Approximationsmethode basierend auf Taylorentwicklung vorgestellt.
Ein wichtiger Beitrag dieser Arbeit ist die Übertragung der Methoden vom periodischen auf den nicht-periodischen Fall. Multivariate algebraische Polynome in Chebyshev-Form werden als Ansatzfunktionen verwendet und sogenannte Rang-1-Chebyshev-Gitter als Diskretisierungen im Ortsbereich. Diese Strategie ermöglicht die Verwendung schneller Algorithmen basierend auf einer eindimensionalen DCT (diskreten Kosinustransformation). Die Glattheit von Funktionen kann durch den Abfall ihrer Chebyshev-Koeffizienten charakterisiert werden. Unter diesem Gesichtspunkt werden Abschätzungen für Abtastfehler gezeigt sowie numerische Tests für bis zu 25 Raumdimensionen.
Ein weiterer wichtiger Beitrag ist die Entwicklung einer Methode zur Berechnung einer hochdimensionalen dünnbesetzten FFT basierend auf Abtastwerten an Rang-1-Gittern, wobei diese Methode die Bestimmung unbekannter Frequenzen ermöglicht, welche zu den näherungsweise größten Fourier- oder Chebyshev-Koeffizienten einer Funktion gehören.
|
Page generated in 0.0682 seconds