• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 4
  • 1
  • Tagged with
  • 18
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fibrés symplectiques et la géométrie des difféomorphismes hamiltoniens

Connery-Grigg, Dustin 08 1900 (has links)
Ce mémoire porte sur quelques éléments de la théorie des fibrés symplectiques et leurs usages en étudiant la géométrie hoferienne sur le groupe de difféomorphismes hamiltoniens. En particulier en assumant un certain confort avec les notions de base de la géométrie différentielle et de la topologie algébrique on développe dans le premier chapitre les rudiments nécessaires de la théorie des G-fibrés et, dans la deuxième, tous les faits nécessaires de la topologie symplectique et les difféomorphismes hamiltoniens pour comprendre la théorie de base des fibrés symplectiques, à voir le morphisme de flux et ses liens aux isotopies hamiltoniennes. Le troisième chapitre présente les fondements des fibrés symplectiques se conclu en construisant la forme de couplage dans un langage invariant et en présentant la caractérisation des fibrés symplectiques, dont le groupe de structure réduit au groupe hamiltonien. Le mémoire se termine en présentant quelques applications des fibrés hamiltoniens à la géométrie de Hofer, en particulier une caractérisation de la partie positive de la norme de Hofer d'un lacet hamiltonien en termes du K-aire du fibré au-dessus de la sphère associé et une démonstration de la non-dégénérescence de la norme de Hofer pour des variétés symplectiques fermées. / This thesis presents a reasonably complete account of the elements theory of symplectic and Hamiltonian fibrations. We assume a familiarity and comfort with the basic notions of differential geometry and algebraic topology but little else. Proceeding from this, the first chapter develops the necessary notions from the theory of fiber bundles and G-fiber bundles, while the second chapter develops all the notions and theorems required to understand the later theory of symplectic fibrations. Most notably the second chapter includes a detailed account of the classical relationship between the flux homomorphism and Hamiltonian isotopies. The third chapter is where we develop the theory of symplectic and locally Hamiltonian fiber bundles, and in particular give an invariant construction of the coupling form on a symplectic fibration admitting an extension class. the third chapter ends with a proof of a structure theorem characterizing those symplectic fibrations for which the structure group reduces to the Hamiltonian group. In the final chapter, we present some applications of the theory of Hamiltonian fibrations by the way of characterizing the positive part of the Hofer norm of a Hamiltonian loop as the K-area of its associated Hamiltonian bundle over the sphere, and we finish by giving a proof of the non-degeneracy of the Hofer norm for closed symplectic manifolds.
12

Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel

Charette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture. Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature. On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture. We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature. We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
13

Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de Seidel

Charette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture. Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature. On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture. We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature. We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
14

Aspects géométriques et topologiques du crochet de Poisson des variétés symplectiques

Payette, Jordan 07 1900 (has links)
Cette thèse étudie deux problèmes de nature géométrique et topologique associés au crochet de Poisson sur les variétés symplectiques. Le premier problème porte sur la notion de submersion symplectique que nous introduisons dans le présent texte et qui généralise la notion de symplectomorphisme. Il s'avère qu'une submersion symplectique est un morphisme de Poisson : il s'agit d'une application entre variétés symplectiques qui préserve le crochet de Poisson. Notre intérêt pour ces fonctions réside dans le fait que le théorème de non-tassement de Gromov porte sur l'aire minimale possible pour les images des submersions symplectiques (allant d'une boule symplectique vers le plan symplectique) obtenues comme compositions d'un plongement symplectique dans l'espace symplectique euclidien de dimension 2n et de la projection standard vers le plan de coordonnées conjuguées (p_1, q_1). Nous investiguons le problème inverse dit « de représentabilité » : nous obtenons des conditions nécessaires et suffisantes pour qu'une submersion symplectique comme ci-dessus se factorise comme précédemment à travers un plongement ou une immersion symplectique dans l'espace euclidien. Nous montrons par ailleurs qu'il existe une submersion symplectique qui ne se factorise pas de la sorte à travers une immersion et qu'il existe aussi une submersion symplectique qui se factorise de la sorte à travers une immersion, mais pas à travers un plongement. Le deuxième problème porte sur la conjecture du crochet de Poisson de Polterovich. Étant donné une variété symplectique (M, omega) et un recouvrement U de M, nous pouvons définir l'invariant pb(F) associé à une partition de l'unité F subordonnée à U, qui est une sorte de norme sur les crochets de Poisson entre les paires de fonctions de la partition. En dénotant e(U) l'énergie de disjonction de Hofer maximale d'un ouvert du recouvrement U, la conjecture demande s'il existe une constante positive C indépendante de U et de F telle que le produit de pb(F) et de e(U) soit supérieur à C. Cette conjecture a été établie récemment par Buhovski-Logunov-Tanny dans le cas des surfaces ; en nous inspirant de travaux antérieurs de Buhovski-Tanny, nous avons aussi démontré la conjecture pour les surfaces de genre plus grand que 1. Nous exposons notre approche dans le second chapitre de cette thèse. À l'aide des submersions symplectiques, nous généralisons nos méthodes afin d'attaquer la conjecture en dimensions supérieures ; nous obtenons ainsi une nouvelle preuve d'un théorème de Polterovich et de Buhovski-Tanny concernant l'invariant pb pour des recouvrements formés de petits ouverts. Afin de rendre cette thèse aussi accessible et auto-suffisante que possible, nous débutons par une introduction à la topologie symplectique. Des annexes recueillent les faits plus particuliers que nous utilisons tout au long de ce travail. / This thesis studies two problems of geometric and topological nature associated to the Poisson bracket on symplectic manifolds. The first problem concerns the notion of "symplectic submersion" that we introduce here and which generalizes the concept of symplectomorphism. A symplectic submersion turns out to be a Poisson morphism, namely a map between symplectic manifolds which preserves the Poisson bracket. Our interest in those maps stems from the fact that Gromov's nonsqueezing theorem is a statement about the minimal area possible for the images of the symplectic submersions (going from a symplectic ball to a symplectic plane) which are compositions of a symplectic embedding into the Euclidean symplectic space and of the standard projection onto the plane of conjugated variables (p_1, q_1). We investigate the inverse "representability" problem: we give necessary and sufficient conditions for a symplectic submersionas above to factorize in the previous way either through a symplectic embedding or through a symplectic immersion into Euclidean space. We show moreover that there exists a symplectic submersion which does not factorize in this way through an immersion, and also that there exists a symplectic submersion which does factorize in this way through an immersion, but not through an embedding. The second problem concerns Polterovich's Poisson bracket conjecture. Given a symplectic manifold (M, omega) and an open cover U of M, we can define the invariantpb(F) of a partition of unity F subordinated to U, which is a sort of norm on the pairwise Poisson brackets of the functions in F. Denoting e(U) the maximal Hofer displacement energy of a set in U, the conjecture asks whether there exists a positive constant C independent of U and F such that the product of pb(F) and e(U) is greater than C. This conjecture was proved recently by Buhovsky-Logunov-Tanny in the case of surfaces; based on earlier work of Buhovsky-Tanny , we also proved the conjecture for surfaces of genus one and above. We present our approach in the second chapter of this thesis. Using symplectic submersions, we generalize our methods in order to tackle the conjecture in higher dimensions; in particular, we obtain a new proof of a theorem of Polterovich and Buhovsky-Tanny about the pb invariant of covers made up of small open sets. In order to make this thesis as accessible and self-contained as possible, we first give an introduction to symplectic topology. The appendices also collect the more specialized facts we use throughout this work.
15

Invariants spectraux en homologie de Floer lagrangienne

Leclercq, Rémi January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
16

Rigidité du crochet de Poisson en topologie symplectique

Rathel-Fournier, Dominique 09 1900 (has links)
No description available.
17

Andreas Hofer : the modernization and Europeanization of the Tyrolean national myth

Garceau, André 05 1900 (has links)
Depuis le début de la crise des réfugiés en Europe en 2014, nous observons une montée du nationalisme au sein de l’Union européenne. L’apparition de groupes nationalistes et anti-migrants nous montre cette tendance, puisque même en Allemagne, l’Alternativ für Deutschland, un parti d’extrême droite s’est implanté dans l’espace politique. L’Union européenne fait présentement face à une crise d’identité, selon Thierry Chopin de la fondation Robert Schuman et Gérard Bouchard, de l’institut Jacques-Delors. Selon eux, l’Union devrait puiser dans les différents mythes nationaux ayant déjà une forte résonnance au sein des différents pays-membres plutôt que d’en inventer de nouveaux. Le mythe d’Andreas Hofer est un bon exemple de ce phénomène. Le héros de la rébellion de 1809 contre l’occupation bavaroise au Tyrol jouit d’une forte popularité au Tyrol et au Tyrol du Sud, en Italie. Son nom se retrouve sur des enseignes d’auberge, sur des panneaux de rue, et de multiples statues peuplent le paysage tyrolien. Depuis 1984, le mythe de ce héros est entré dans une phase de changement : il est désormais possible de remettre en question la trame du mythe et des événements y étant liés, bref, de douter. À l’aide d’articles de journaux concernant le mythe et ses diverses manifestations (événements culturels, expositions dans divers musées, célébrations, débats politiques, etc.), nous tracerons l’évolution du mythe d’Andreas Hofer depuis l’entrée de l’Autriche au sein de l’Union européenne. Nous observons l’évolution du mythe en trois phases : celle de la modernisation, de la consolidation lors des célébrations du 200ième anniversaire de la rébellion de 1809, et, finalement, celle de l’européanisation. Nous démontrerons ainsi que, contrairement à ce que pensaient plusieurs chercheurs sur le sujet, le mythe est encore très présent aujourd’hui. / Since the European refugee and migrant crisis began in January 2015, nationalism has grown in popularity again across Europe. The number of nationalist parties and anti- migrant movements have increased to a point where there is once again a far-right movement, the Alternativ für Deutschland, in Germany; something thought impossible until recently. The EU itself is facing an identity crisis, as identified by Thierry Chopin of the Robert-Schuman Foundation and Gérard Bouchard of the Jacques-Delors Institute. Both scholars have argued that, instead of creating new national myths to bolster its political support, the EU should exploit existing ones, and indicated that they might already be doing so. Still, the extant literature does not explain how this mythological reframing influences local, mediated discourses and policies. Therefore, the Euroregion of Tyrol- South-Tyrol-Trentino’s Andreas Hofer mythology and its impacts are still strong candidates for study. Indeed, Hofer, who was called the “rebel of the Alps” during the Napoleonic wars, has always enjoyed high popularity in both Tyrol and South-Tyrol in Italy, where his name is on street signs, hotels, and the many statues dedicated to him. Since 1984, Hofer mythology shifted in ways that challenged its traditional narratives. This shift was accomplished, in part, by newspaper articles covering the myth and its various manifestations (e.g., museums, cultural events, and other celebrations). Therefore, the current study traces the myth’s evolution back to Austria’s entry into the EU in 1995 to demonstrate that this folk-hero mythology underwent three stages of development: 1) Modernization, where the myth took on new forms to fit its current local contexts; 2) consolidation, where this new Hofer-imagery coalesced during the rebellion’s 200th-year celebrations in 2009, and, finally; 3) Europeanization. We conclude that, in this final stage, contrary to popular scholarly belief, Hofer and his mythology are still very salient topics and political tools in, not only the Euroregion, but now, also across the whole of Europe.
18

Helmut Hofer

Müller-Kelwing, Karin 04 June 2021 (has links)
No description available.

Page generated in 0.0234 seconds