Spelling suggestions: "subject:"home Ordnung"" "subject:"hope Ordnung""
1 |
Corrections of high-order nonlinearities in the LHC and High-Luminosity LHC beam opticsDilly, Joschua 01 March 2024 (has links)
Der Einfluss von Nichtlinearitäten höherer Ordnung der Magnetfelder auf die Leistung des Large Hadron Collider (LHC) und dessen geplante High-Luminosity-Aufrüstung, dem HL-LHC, wurde umfangreich untersucht. Insbesondere hat sich gezeigt, dass das Vorhandensein solcher Fehler in den Insertion Regions (IR) erhebliche Auswirkungen hat, bedingt durch hohe Beta-Funktionen und Feed-Down auf niedrigere Ordnungen aufgrund der Kreuzungsschemata. Augenmerk dieser Arbeit ist auf die Erforschung diverser Methoden zur effektiven Behandlung dieser Nichtlinearitäten höherer Ordnung gerichtet, mit dem Ziel, sie zu identifizieren und korrigieren, um die Strahloptik zu optimieren und die Maschinenleistung zu verbessern.
Simulationsstudien werden eingesetzt, in denen mit verschiedenen Fehlerquellen assoziierte Resonanzantreibende Terme (RDTs) gezielt angegangen werden.
Besondere Aufmerksamkeit gilt Dekapol- und Dodekapolfehlern, die in früheren Messungen im LHC schädliche Auswirkungen durch Feed-Down auf Amplituden-Detuning gezeigt haben.
Die erwartete Erhöhung der Sensitivität der Optik gegenüber Fehlern in den IRs des HL-LHC unterstreicht weiter die Bedeutung der Behandlung dieser Fehler.
Des Weitern werden Korrekturoptionen mit Hilfe der nichtlinearen Korrektorpaketen entwickelt.
Experimentelle Studien werden durchgeführt, um die Ergebnisse zu validieren.
Erhebliche Anstrengungen wurden unternommen, um die Feed-Down Effekte von Dekapol- und Dodekapol-Feldfehlern zu mindern. Um diese Herausforderung anzugehen, wurden neuartige Korrekturalgorithmen eingeführt, die erstmals die Dodekapol-Korrektoren in den IRs im operationellen Betrieb ansteuern.
Die Ergebnisse dieser Experimente liefern wertvolle Erkenntnisse zur Minderung von Fehlern höherer Ordnung und tragen zum besseren Verständnis der Strahldynamik in modernen und zukünftigen Teilchenbeschleunigern bei. / The impact of high-order nonlinear magnetic field errors on the performance of the Large Hadron Collider (LHC) and its planned High-Luminosity upgrade, the HL-LHC, has been extensively studied. Particularly, the presence of such errors in the Insertion Regions (IR) has shown significant repercussions due to the high beta-functions and feed-down to lower orders caused by crossing schemes. This thesis aims to explore different methods for effectively addressing these high-order errors, with the ultimate goal of identifying and correcting them to optimize beam optics and enhance machine performance.
Simulation studies are employed, using a novel and flexible correction algorithm developed during the course of this PhD research. Various strategies are investigated to improve corrections by targeting Resonance Driving Terms (RDTs) associated with diverse error sources.
Special attention is devoted to decapole and dodecapole errors,
which have demonstrated detrimental effects on amplitude detuning due to feed-down
based on previous measurements in the LHC. The anticipated increase in optics sensitivity to errors in the IRs of the HL-LHC further underscores the importance of addressing these errors.
Correction options are evaluated, focusing on the utilization of the nonlinear corrector packages to address errors in the new separation and recombination dipoles in the HL-LHC, where increased decapole errors had been expected.
Experimental studies are conducted to validate the findings. Significant efforts are dedicated to mitigating the feed-down effects arising from decapole and dodecapole field errors. To address this challenge, novel corrections involving the operational implementation of dodecapole correctors in the IRs have been introduced for the first time.
The results of these experiments provide valuable insights into the mitigation of high-order errors and contribute to the overall understanding of beam dynamics in advanced particle accelerators.
|
2 |
On a Family of Variational Time Discretization MethodsBecher, Simon 09 September 2022 (has links)
We consider a family of variational time discretizations that generalizes discontinuous Galerkin (dG) and continuous Galerkin-Petrov (cGP) methods. In addition to variational conditions the methods also contain collocation conditions in the time mesh points. The single family members are characterized by two parameters that represent the local polynomial ansatz order and the number of non-variational conditions, which is also related to the global temporal regularity of the numerical solution. Moreover, with respect to Dahlquist’s stability problem the variational time discretization (VTD) methods either share their stability properties with the dG or the cGP method and, hence, are at least A-stable.
With this thesis, we present the first comprehensive theoretical study of the family of VTD methods in the context of non-stiff and stiff initial value problems as well as, in combination with a finite element method for spatial approximation, in the context of parabolic problems. Here, we mainly focus on the error analysis for the discretizations. More concrete, for initial value problems the pointwise error is bounded, while for parabolic problems we rather derive error estimates in various typical integral-based (semi-)norms. Furthermore, we show superconvergence results in the time mesh points. In addition, some important concepts and key properties of the VTD methods are discussed and often exploited in the error analysis. These include, in particular, the associated quadrature formulas, a beneficial postprocessing, the idea of cascadic interpolation, connections between the different VTD schemes, and connections to other classes of methods (collocation methods, Runge-Kutta-like methods). Numerical experiments for simple academic test examples are used to highlight various properties of the methods and to verify the optimality of the proven convergence orders.:List of Symbols and Abbreviations
Introduction
I Variational Time Discretization Methods for Initial Value Problems
1 Formulation, Analysis for Non-Stiff Systems, and Further Properties
1.1 Formulation of the methods
1.1.1 Global formulation
1.1.2 Another formulation
1.2 Existence, uniqueness, and error estimates
1.2.1 Unique solvability
1.2.2 Pointwise error estimates
1.2.3 Superconvergence in time mesh points
1.2.4 Numerical results
1.3 Associated quadrature formulas and their advantages
1.3.1 Special quadrature formulas
1.3.2 Postprocessing
1.3.3 Connections to collocation methods
1.3.4 Shortcut to error estimates
1.3.5 Numerical results
1.4 Results for affine linear problems
1.4.1 A slight modification of the method
1.4.2 Postprocessing for the modified method
1.4.3 Interpolation cascade
1.4.4 Derivatives of solutions
1.4.5 Numerical results
2 Error Analysis for Stiff Systems
2.1 Runge-Kutta-like discretization framework
2.1.1 Connection between collocation and Runge-Kutta methods and its extension
2.1.2 A Runge-Kutta-like scheme
2.1.3 Existence and uniqueness
2.1.4 Stability properties
2.2 VTD methods as Runge-Kutta-like discretizations
2.2.1 Block structure of A VTD
2.2.2 Eigenvalue structure of A VTD
2.2.3 Solvability and stability
2.3 (Stiff) Error analysis
2.3.1 Recursion scheme for the global error
2.3.2 Error estimates
2.3.3 Numerical results
II Variational Time Discretization Methods for Parabolic Problems
3 Introduction to Parabolic Problems
3.1 Regularity of solutions
3.2 Semi-discretization in space
3.2.1 Reformulation as ode system
3.2.2 Differentiability with respect to time
3.2.3 Error estimates for the semi-discrete approximation
3.3 Full discretization in space and time
3.3.1 Formulation of the methods
3.3.2 Reformulation and solvability
4 Error Analysis for VTD Methods
4.1 Error estimates for the l th derivative
4.1.1 Projection operators
4.1.2 Global L2-error in the H-norm
4.1.3 Global L2-error in the V-norm
4.1.4 Global (locally weighted) L2-error of the time derivative in the H-norm
4.1.5 Pointwise error in the H-norm
4.1.6 Supercloseness and its consequences
4.2 Error estimates in the time (mesh) points
4.2.1 Exploiting the collocation conditions
4.2.2 What about superconvergence!?
4.2.3 Satisfactory order convergence avoiding superconvergence
4.3 Final error estimate
4.4 Numerical results
Summary and Outlook
Appendix
A Miscellaneous Results
A.1 Discrete Gronwall inequality
A.2 Something about Jacobi-polynomials
B Abstract Projection Operators for Banach Space-Valued Functions
B.1 Abstract definition and commutation properties
B.2 Projection error estimates
B.3 Literature references on basics of Banach space-valued functions
C Operators for Interpolation and Projection in Time
C.1 Interpolation operators
C.2 Projection operators
C.3 Some commutation properties
C.4 Some stability results
D Norm Equivalences for Hilbert Space-Valued Polynomials
D.1 Norm equivalence used for the cGP-like case
D.2 Norm equivalence used for final error estimate
Bibliography
|
Page generated in 0.0461 seconds