1 |
Value of Bundled Recreation Amenities in Southern Arizona Communities: A Hedonic Pricing ApproachHoffman, Eliza Ann 16 July 2012 (has links) (PDF)
The primary purpose of this study was to examine the contribution of family-recreation amenities to home valuation in Southern Arizona communities. Although recreation amenities have become a frequent addition to housing developments, little research exists regarding the value these amenities contribute to home valuation. The sample consisted of 600 homes in master-planned communities and 600 homes in comparable traditional subdivisions. Using the hedonic pricing method, this study examined whether the inclusion of recreation amenities provides additional value to homes after structural and locational characteristics were controlled for. Blocked multiple regression analyses were used to determine the contribution of both individual and bundled recreation amenities to home valuation. The results of this study revealed a positive significant relationship between the bundle of community parks, neighborhood parks, and trails located within master-planned communities and home valuation, accounting for 17.45% of home value in this sample. In addition, the inclusion of family-recreation programming was found to contribute 6.82% of home value within master-planned communities. The findings suggest the inclusion of recreation amenities may be an appropriate way to revitalize communities, to increase the tax base for new housing developments, and to attract residents during a time of economic recession.
|
2 |
Learning to Price Apartments in Swedish Cities / Lära sig prissätta lägenheter i svenska städerSegerhammar, Fredrik January 2021 (has links)
This thesis tackles the problem of accurately pricing apartments in large Swedish cities using geospatial data. The aim is to determine if geospatial data and population statistics can be used in conjunction with direct apartment data to accurately price apartments in large cities. There has previously been little research in this domain due to a lack of available data in many countries. In Sweden, apartment transaction data is public which enabled this thesis to be performed. We apply and compare a multiple linear regression, a multi-layer perceptron and a random forest to appraise apartments in six of the largest cities in Sweden. To perform the appraisals, geospatial data and population statistics were gathered in the areas surrounding the apartments. Five of the six cities were used to train and test the models, whereas one city was only used for testing. The two best performing models, the multi-layer perceptron and random forest achieved a mean absolute percentage error of 8.68% and 8.76% respectively within cities they were previously trained within and a mean absolute percentage error of 22.62% and 20.6% respectively on apartment in the test city dataset. In conclusion this thesis suggests that with the use of this data, multi-layer perceptrons and random forests are useful for appraising apartments in different cities, however that more data is probably needed to appraise apartments in cities previously unseen by the models. / Detta masterarbete tar upp problemet med att korrekt prissätta lägenheter i stora svenska städer med hjälp av geospatiala data. Syftet är att avgöra om geospatiala data och befolkningsstatistik kan användas tillsammans med direkt lägenhetsdata för att korrekt prissätta lägenheter i storstäder. Det har tidigare utförts lite forskning inom detta område på grund av brist på tillgängliga data i många länder. I Sverige är uppgifter om lägenhetstransaktioner offentliga vilket gjorde att denna avhandling kunde utföras. Vi tillämpar och jämför en multipel linjär regression, en flerskiktsperceptron och en slumpmässig skog för att värdera lägenheter i sex av de största städerna i Sverige. För att göra värderingarna samlades geospatiala data och befolkningsstatistik i de områden som omger lägenheterna. Fem av de sex städerna användes för att träna och testa modellerna, medan en stad endast användes för testning. De två bäst presterande modellerna, flerskiktsperceptronen och slumpmässig skog uppnådde ett genomsnittligt absolut procentfel på 8,68% respektive 8,76% inom städer som de tidigare var tränade inom och ett genomsnittligt absolut procentfel på 22,62% respektive 20,6% på lägenheter i teststadens dataset. Sammanfattningsvis tyder detta verk på att med hjälp av dessa data är flerskiktsperceptroner och slumpmässiga skogar användbara för att värdera lägenheter i olika städer, men att mer data förmodligen behövs för att värdera lägenheter i städer som modellerna tidigare inte har tränats på.
|
Page generated in 0.0995 seconds