• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polyisobutylene as a Polymer Support for Homogeneous Catalysis

Hongfa, Chayanant 14 January 2010 (has links)
Phase selective soluble polymers are useful in organic synthesis because they simplify purification and separation processes. Such selective soluble polymers enable the use of Green chemistry principles to be utilized as ways to simplify catalyst, reagent, and product recovery. Polyisobutylene oligomers serve as examples of such polymers. Vinyl terminated polyisobutylene (PIB) oligomers can be easily transformed into a variety of end-functionalized PIB oligomers. Previous work has shown that PIB oligomers possess nonpolar phase selective solubility that allows them to be used as polymer supports for ligands and catalysts in liquid/liquid biphasic systems. This dissertation focuses on the use of PIB oligomers as supports for a salen Cr(III) complex, a Hoveyda-Grubbs 2nd generation catalyst, and a N-heterocyclic carbene. The syntheses of these PIB-supported ligands and catalysts are simple and straightforward. The synthetic products and the intermediates in these syntheses can all be readily analyzed and monitored by conventional spectroscopic methods. The activity of the PIBsupported catalysts is shown to be analogous to that of other soluble polymer supported catalysts or their non-supported analogs. The PIB-bound catalysts can be separated from products by a latent biphasic, liquid/liquid extractions, or product self-separation systems. The recovered PIB-bound catalysts can then be recycled multiple times.
2

Highly Efficient Catalytic Transformations of Unsaturated Compounds via Ligand-Induced Selective Addition of Copper Species / 銅化学種の配位子制御による選択的付加を鍵とする不飽和化合物の触媒的高効率分子変換反応

Semba, Kazuhiko 25 March 2013 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17522号 / 工博第3681号 / 新制||工||1560(附属図書館) / 30288 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 辻 康之, 教授 大江 浩一, 教授 松原 誠二郎 / 学位規則第4条第1項該当
3

Ruthenium(iii) Acetylacetonate / A Homogeneous Catalyst In The Hydrolysis Of Sodium Borohydride

Keceli, Ezgi 01 May 2006 (has links) (PDF)
Ruthenium(III) acetylacetonate was employed for the first time as homogeneous catalyst in the hydrolysis of sodium borohydride. Ruthenium(III) acetylacetonate was not reduced by sodium borohydride under the experimental conditions and remains unchanged after the catalysis, as shown by FT-IR and UV-Vis spectroscopic characterization. Poisoning experiments with mercury, carbon disulfide or trimethylphosphite provide compelling evidence that ruthenium(III) acetylacetonate is indeed a homogenous catalyst in the hydrolysis of sodium borohydride. Kinetics of the ruthenium(III) acetylacetonate catalyzed hydrolysis of sodium borohydride was studied depending on the catalyst concentration, substrate concentration and temperature. The hydrogen generation was found to be first order with respect to both the substrate concentration and catalyst concentration. The activation parameters of this reaction were also determined from the evaluation of the kinetic data: activation energy / Ea = 25.6 &amp / #61617 / &amp / #61472 / 1.3 kJ.mol-1, the enthalpy of activation / &amp / #8710 / H# = 24.6 &plusmn / 1.2 kJ.mol-1 and the entropy of activation &amp / #8710 / S# = -170 &plusmn / 5 J&amp / #61655 / mol-1&amp / #61655 / K-1. Ruthenium(III) acetylacetonate provides the lowest activation energy ever found for the hydrolysis of sodium borohydride. Ruthenium(III) acetylacetonate was found to be highly active catalyst providing 1183 total turnovers in the hydrolysis of sodium borohydride over 180 min before they are deactivated. The recorded turnover frequency (TOF) is 6.55 min-1.
4

Assessment of new catalysts for electrochemical reduction of carbon dioxide

Goel, Ekta 09 August 2019 (has links)
The industrial revolution caused the release of carbon dioxide (CO2) into the atmosphere leading to a climate crisis. The impact of more CO2 in the atmosphere has been experienced by everybody. The summers are longer and hotter, while the winters are colder and shorter. The ocean water has become more acidic threatening the ocean life. There is an immediate need to reduce CO2 and switch to alternate energy for human survival. Electrochemical reduction of CO2 (ERC) is a promising technology capable of converting excess CO2 into valueded products. The process of recycling CO2 can address the problem of excess CO2 and is a sustainable solution until our dependence on fossil fuels is reduced. However, currently there are very few catalysts that can convert CO2 into valuable products with a low overpotential. The current research evaluates new catalysts for their ERC potential. [Ni(cyclam)]2+ is a well-known catalyst used to reduce CO2 homogeneously. Therefore, it was used as a standard to optimize the CO2 evaluation protocol. Two new catalysts developed in Dr. Hollis's laboratory, a Pt- pincer and a Fepincer molecule were assessed using this method. Cyclic voltammetry and bulkelectrolysis (BE) experiments were performed under Ar and CO2 environments. The gaseous products from BE were primarily CO and H2 and their quantitative measurement was performed using gas chromatography. Formate determination was performed using UV-Vis spectroscopy. Faradaic yields were calculated for CO, H2, and formate. The overpotentials were calculated for all the processes, and a comparison was made to determine the most efficient process. The turnover numbers (TON) and the turnover frequencies (TOF) of all the catalysts were calculated. Based on all the criteria, the Fepincer complex was determined to be the most promising catalyst for further optimization. Additionally, a Faradaic efficiency calculation spreadsheet was created to improve calculation efficiency. The protocol described here has been successfully applied to assess new catalysts and can prove to be an invaluable tool when numerous catalysts require evaluation.
5

Reactions and Separations in Tunable Solvents

Thomas, Colin A. 20 October 2006 (has links)
The work in this thesis couples reactions with separations through the use of switchable and tunable solvents. Tunable solvents are mixed solvents which can be easily altered to afford conditions optimal for reaction or separation. Switchable solvents are solvents that can be switched when desired to alter their properties affording conditions suitable for separation. Other studies are of the reaction of CO2 with the amidine base DBU, and an NMR study of solvent-to-solute nuclear Overhauser effects. These examples constitute a marriage of reaction environment with separation environment, significantly, to the benefit of both.
6

Testing The Ruthenium(iii) Acetylacetonate And 1,2-bis(diphenylphosphino)ethane System As Homogeneous Catalyst In The Hydrolysis Of Sodium Borohydride

Demiralp, Tulin 01 June 2008 (has links) (PDF)
Recent studies have shown that ruthenium(III) acetylacetonate is acting as homogeneous catalyst in the hydrolysis of sodium borohydride. Although trimethlyphosphite is found to be a poison for the catalytic hydrolysis of sodium borohydride, a longer observation of the reaction in the presence of ruthenium(III) acetylacetonate and 2 equivalent trimethylphosphite shows an unexpected enhancement in the catalytic activity after an induction period. The same rate enhancement is observed when 2 equivalent triphenylphosphine is added into the reaction solution. Addition of 1 equivalent 1,2-bis(diphenylphosphino)ethane, dppe, into the solution shows similarly a rate enhancement in the hydrolysis of sodium borohydride catalyzed by ruthenium(III) acetylacetonate. The effect of 1,2-bis(diphenylphosphino)ethane on the catalytic activity of ruthenium(III) acetylacetonate in the hydrolysis of sodium borohydride was studied by varying mole ratio of dppe / Ru(acac)3, ruthenium concentration, substrate concentration and temperature. The highest enhancement in the rate of hydrolysis was obtained when 1 equivalent dppe was used and therefore, this mole ratio of dppe / Ru(acac)3 was used in the further studies. The rate of the reaction was found to be first order in catalyst concentration and zero order in substrate concentration. From the evaluation of rate constant versus temperature data, the activation parameters for the hydrolysis of sodium borohydride catalyzed by ruthenium(III) acetylacetonate plus 1 equivalent dppe were found to be Ea= 59 &plusmn / 2 kJ/mol, &amp / #8710 / H&amp / #8800 / = 60 &plusmn / 1 kJ.mol-1 and &amp / #8710 / S&amp / #8800 / = -50 &plusmn / 3 J.(mol.K)-1. A series of control experiments were performed to characterize the active catalyst. However, the only useful information could be obtained by comparison of the UV-vis electronic absorption spectra taken from the solution during the catalytic reaction, is that, ruthenium(III) is reduced to ruthenium(II) in the course of reaction. It was concluded that a ruthenium(II) species is formed as a transient and may be the active catalyst in the reaction. After the reaction, the only ruthenium species isolated from the solution was the ruthenium(III) acetylacetonate.
7

Synthèses et applications catalytiques de nanoparticules d’élements de transition / Synthesis and Catalytic Applications of the Transition Elements Nanoparticles

Fu, Fangyu 13 November 2019 (has links)
La catalyse constitue un élément clé en synthèse chimique et la recherche actuelle tend à rendre les procédés catalytiques plus propres dans le contexte de la chimie verte. Dans cet esprit, cette thèse a impliqué la recherche de catalyseurs nanoparticulaires utilisés en milieu aqueux, sans ligand toxique et en très faible quantité. La synthèse des nanoparticules (NPs) catalytiques a utilisé des ions des éléments de transition de la droite du tableau périodique et des réducteurs capables de réduire rapidement ces cations en atomes de degré d’oxydation nul s’agrégeant en petites NPs métalliques très actives en catalyse. Les réducteurs choisis ont été des composés réservoirs d’électron organique (naphthyl sodium) ou organométalliques (complexes sandwichs à 19 électrons de valence du fer tel que [Fe(I)Cp*(ŋ6-C6Me6)] ou du cobalt tel que [Co(II)Cp*2], (Cp* = ŋ5-C5Me5)). Les supports limitant l’agrégation des NPs métalliques ont été le solvant (polyéthylène glycol, 1ère partie de la thèse), les cations des réservoirs d’électron organométalliques (2ème partie de la thèse) ou un réseau zéolitique imidazolate (MOF de type ZIF-8, 3ème partie de la thèse). Au lieu d’un cation métallique, il a aussi été possible d’utiliser un cluster tel que [Au25(SR)18] (R = CH2CH2Ph) comme précurseur, auquel cas la réduction peut se limiter à un simple transfer d’électron produisant un cluster anionique stabilisé par le contre-cation sandwich encombré du réservoir d’électron. Les petites NPs ainsi stabilisées se sont avérées d’excellents catalyseurs “verts” de plusieurs réactions de couplage C-C ou C-N et de production d’hydrogène par hydrolyse d’hydrures métalliques en milieu aqueux dans des conditions très douces. Cette dernière réaction a été efficacement catalysée par des NPs bimétalliques Ni2Pt NP@ZIF-8 avec une synergie spectaculaire entre les deux métaux. / Catalysis is a key element in chemical synthesis, and current research is focusing on making catalytic processes cleaner in the context of green chemistry. In this spirit, this thesis involves the research of nanoparticle (NP) catalysts used in aqueous medium, without toxic ligand and in very small quantities toward a variety of useful processes. The synthesis of the catalytic NPs used cations of the transition elements of the right of the periodic table and of reducing agents capable of rapidly reducing these cations to atoms of zero oxidation state aggregating into small catalytically active metal NPs. The chosen reducing agents were organic (naphthyl sodium) or organometallic (19-electron) sandwich complexes of iron such as [Fe(I)Cp*(ŋ6-C6Me6)] or cobalt such as [Co(II)Cp*2], (Cp* = ŋ5-C5Me5)) used as electron reservoirs. The supports limiting the aggregation of the metal NPs were the solvent (polyethylene glycol, first part of the thesis), the cations of the organometallic electron reservoirs (2nd part of the thesis) or a zeolitic imidazolate framework (MOF of ZIF-8 type, 3rd part of the thesis). Instead of a metal cation, it has also been possible to use a cluster such as [Au25(SR) 18] (R = CH2CH2Ph) as a precursor, in which case the reduction was limited to a simple electron transfer producing an anionic cluster stabilized by the congested sandwich counter cation of the electron reservoir. The small NPs thus stabilized proved to be excellent "green" catalysts for several C-C or C-N reactions and hydrogen production by hydrolysis of metal hydrides in an aqueous medium under very mild conditions. This latter reaction was efficiently catalyzed by Ni2Pt@ZIF-8 bimetallic NPs with a spectacular synergy between the two metals.
8

Effect Of Stabilizer On The Catalytic Activity Of Cobalt(0) Nanoclusters Catalyst In The Hydrolysis Of Sodium Borohydride

Kocak, Ebru 01 December 2009 (has links) (PDF)
The development of new storage materials will facilitate the use of hydrogen as a major energy carrier in near future. Among the chemical hydrides used as hydrogen storage materials for supplying hydrogen at ambient temperature, sodium borohydride seems to be an ideal one because it is stable under ordinary conditions and liberates hydrogen gas in a safe and controllable way in aqueous solutions. However, self hydrolysis of sodium borohydride is so slow that requires a suitable catalyst. This work aims the use of water dispersible cobalt(0) nanoclusters having large portion of atoms on the surface as catalyst for the hydrolysis of sodium borohydride. In-situ formation of cobalt(0) nanoclusters and catalytic hydrolysis of sodium borohydride were performed starting with a cobalt(II) chloride as precursor and sodium borohydride as reducing agent and substrate in the presence of a water soluble stabilizer. As stabilizer, water soluble polyacrylic acid as well as hydrogen phosphate ion were tested. Cobalt(0) nanoclusters were characterized by using all the available analytical methods including FT-IR, TEM, XPS, UV-visible electronic absorption spectroscopy. The kinetics of cobalt(0) nanoclusters catalyzed hydrolysis of sodium borohydride were studied depending on the catalyst concentration, substrate concentration, stabilizing agent concentration and temperature.
9

Obtenção de biodiesel a partir da mistura dos óleos de milho e algodão usando catalisador homegêneo e heterogêneo. / Obtaining of biodiesel from a mixture of corn and cotton oils, using homogeneous and heterogeneous catalysts.

LIMA, Lionete Nunes de. 16 October 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-10-16T15:27:12Z No. of bitstreams: 1 LIONETE NUNES DE LIMA - DISSERTAÇÃO PPGEQ 2008..pdf: 8876050 bytes, checksum: 6b3dfb40f7b7e786c521fd452704f322 (MD5) / Made available in DSpace on 2018-10-16T15:27:12Z (GMT). No. of bitstreams: 1 LIONETE NUNES DE LIMA - DISSERTAÇÃO PPGEQ 2008..pdf: 8876050 bytes, checksum: 6b3dfb40f7b7e786c521fd452704f322 (MD5) Previous issue date: 2008-09-30 / A maior parte da energia consumida no mundo provém do petróleo, do carvão e do gás natural. O esgotamento das fontes de energia, especialmente energia fóssil, sobretudo sua impossibilidade de renovação, tem motivado o desenvolvimento de tecnologias que permitam utilizar fontes renováveis de energia. O biodiesel é biodegradável, renovável e obedece ao ciclo de carbono, sendo definido como mono-alquil éster de ácidos graxos derivado de fontes renováveis, como óleos vegetais e gorduras animais, o mesmo pode ser obtido através de um processo de transesterifícação, no qual ocorre a transformação de triacilglicerídeos em moléculas menores de ésteres de ácidos graxos e apresenta características físico-químicas semelhantes às do diesel fóssil. Este trabalho apresenta a obtenção de biodiesel a partir da mistura dos óleos de milho e algodão obtido por transesterifícação sob uso do catalisador homogéneo (KOH) e heterogéneo (MCM-41 e 1% Mo/MCM-41). A mistura dos óleos vegetais e o biodiesel etílico foram caracterizados em função das propriedades físicoquímicas, reologia, cromatografia gasosa (CG), espectroscopia de infravermelho (IV) e termogravimetria (TG). Mediante os resultados obtidos pode-se observar que a rota homogênea promoveu uma conversão em ésteres etílicos de 81,23%, já a rota heterogênea não se obteve resultados satisfatórios o que foi observado pelo elevado teor de triacilglicerídeos. As análises no infravermelho e por cromatografia gasosa permitiram a análise química do processo. Nas análises termogravimétricas, observou-se que o biodiesel apresentou uma temperatura de decomposição inicial menor que a do óleo, demonstrando ser mais volátil e aproximando-se do diesel. / Most of the world energy consumption derives from oil, coal and natural gas. The shortage of the energy sources, especially the energy from fóssil fuels, and moreover the impossibility of its renewal has motivated the development of technologies that allow the usage of renewable energy sources. Biodiesel is biodegradable, renewable and it obeys the cycle of carbon, it is defined as a blend of mono-alkyl esters of fatty acids derived from renewable sources, as vegetable oils and animal fats. It can be obtained by means of a transesterification process, in which the transformation of triacylglycerides into smaller molecules of fatty acid esters takes place, and it displays physical and chemical characteristics similar to the ones of a fóssil fuelderived diesel oil. This paper presents the production of biodiesel from a mixture of corn and cotton oils transesterified with homogeneous (KOH) and heterogeneous (MCM-41 and 1% Mo/MCM-41) catalysts. The mixture of vegetable oils and the ethanol biodiesel were characterized in terms of physical and chemical properties, rheology, gas chromatography (GC), infrared spectroscopy (IR) and thermal analysis (TG). The results showed that the homogeneous route promoted a 81,23% conversion into ethyl esters conversely, the heterogeneous route did not show satisfactory results, as a the high levei of triacylglycerides was observed. The infrared spectroscopy and gas chromatography analyses were used for the chemical analysis of the products. In thermogravimetric analyses, it was observed that the Biodiesel samples presented a lower initial decomposition temperature than that of the vegetable oil, suggesting that these samples are more volatile than the oil and closer to diesel.

Page generated in 0.0781 seconds