• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on electrical analysis and hot carrier effect of 65nm MOSFETs under External Mechanical Stress

Ho, Wei-Te 24 July 2006 (has links)
Semiconductor technology has already got into nanometer scale. As the dimension keeping scaling down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck; we must find another way to improve the performance of transistor. In this study, we fully discuss the electrical characteristics and the hot carrier effect as the channel of the N-MOSFETs being strained. In order to strain the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will be strained after applying uniaxial tensile stress. Therefore, we successfully improve drain current and carrier mobility of NMOS, and the increasing rates are 22% and 30% respectively. In addition, we can understand the influence of hot carrier effect on strain silicon by bending silicon substrate with external mechanical stress. With the increase of curvature, substrate current goes up. We offer an explanation to verify this result.
2

Electrical Analysis of Hot Carrier Effect at Various Temperature of 65nm MOSFETs under External Mechanical Stress

Kuo, Chun-ting 24 July 2007 (has links)
Semiconductor technology has already got into nanometer scale. As the dimension keeping scaling down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck, we must find another way to improve the performance of transistor. The reliability is more important in the shorter and shorter device channel. In this study, we fully discuss the electrical characteristics of the hot carrier effect at various temperature of 65nm MOSFETs under external mechanical stress. In order to strain the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will be strained after applying uniaxial tensile stress. Therefore, we successfully improve drain current and carrier mobility of NMOS, but the hot carrier effect is more serious. In addition, we can understand the influence of hot carrier effect on strain silicon by bending silicon substrate with external mechanical stress. With the increase of curvature, substrate current goes up. We offer an explanation to verify this result. The temperature effect is also measured. The drain current and mobility increased with the temperature decreasing, but the substrate current increased with temperature increasing.
3

The Effect Of Hot Carrier Stress On Low Noise Amplifier Radio Frequency Performance Under Weak And Strong Inversion

Shen, Lin 01 January 2006 (has links)
This thesis work is mainly focused on studying RF performance degradation of a low noise amplifier (LNA) circuit due to hot carrier effect (HCE) in both the weak and strong inversion regions. Since the figures of merit for the RF circuit characterization are gain, noise figure, input, and output matching, the LNA RF performance drift is evaluated in a Cadence SpectreRF simulator subject to these features. This thesis presents hot carrier induced degradation results of an LNA to show that the HCE phenomenon is one of the serious reliability issues in the aggressively scaled RF CMOS design, especially for long-term operation of these devices. The predicted degradation from simulation results can be used design reliable CMOS RF circuits.
4

The Effect Of Hot Carrier Stress On Low Noise Amplifier Radio Frequency Performance Under Weak And Strong Inversion

Shen, Lin 01 January 2006 (has links)
This thesis work is mainly focused on studying RF performance degradation of a low noise amplifier (LNA) circuit due to hot carrier effect (HCE) in both the weak and strong inversion regions. Since the figures of merit for the RF circuit characterization are gain, noise figure, input, and output matching, the LNA RF performance drift is evaluated in a Cadence SpectreRF simulator subject to these features. This thesis presents hot carrier induced degradation results of an LNA to show that the HCE phenomenon is one of the serious reliability issues in the aggressively scaled RF CMOS design, especially for long-term operation of these devices. The predicted degradation from simulation results can be used design reliable CMOS RF circuits.
5

Hot Carrier Effect On Ldmos Transistors

Jiang, Liangjun 01 January 2007 (has links)
One of the main problems encountered when scaling down is the hot carrier induced degradation of MOSFETs. This problem has been studied intensively during the past decade, under both static and dynamic stress conditions. In this period it has evolved from a more or less academic research topic to one of the most stringent constraints guaranteeing the lifetime of sub-micron devices. New drain engineering technique leads to the extensive usage of lateral doped drain structures. In these devices the peak of the lateral field is lowered by reducing the doping concentration near the drain and by providing a smooth junction transition instead of an abrupt one. Therefore, the amount of hot carrier generation for a given supply voltage and the influence of a certain physical damage on the electrical characteristics is decreased dramatically. A complete understanding of the hot carrier degradation problem in sub-micron 0.25um LD MOSFETs is presented in this work. First we discuss the degradation mechanisms observed under, for circuit operation, somewhat artificial but well-controlled uniform-substrate hot electron and substrate hot-hole injection conditions. Then the more realistic case of static channel hot carrier degradation is treated, and some important process-related effects are illustrated, followed by the behavior under the most relevant case for real operation, namely dynamic degradation. An Accurate and practical parameter extraction is used to obtain the LD MOSFETs model parameters, with the experiment verification. Good agreement between the model simulation and experiment is achieved. The gate charge transfer performance is examined to demonstrate the hot carrier effect. Furthermore, In order to understand the dynamic stress on the LD MOSFET and its effect on RF circuit, the hot-carrier injection experiment in which dynamic stress with different duty cycle applied to a LD MOS transistor is presented. A Class-C power amplifier is used to as an example to demonstrate the effect of dynamic stress on RF circuit performance. Finally, the strategy for improving hot carrier reliability and a forecast of the hot carrier reliability problem for nano-technologies are discussed. The main contribution of this work is, it systemically research the hot carrier reliability issue on the sub-micron lateral doped drain MOSFETs, which is induced by static and dynamic voltage stress; The stress condition mimics the typical application scenarios of LD MOSFET. Model parameters extraction technique is introduced with the aid of the current device modeling tools, the performance degradation model can be easily implement into the existing computer-aided tools. Therefore, circuit performance degradation can be accurately estimated in the design stage. CMOS technologies are constantly scaled down. The production on 65 nm is on the market. With the reduction in geometries, the devices become more vulnerable to hot carrier injection (HCI). HCI reliability is a must for designs implemented with new processes. Reliability simulation needs to be implemented in PDK libraries located on the modeling stage. The use of professional tools is a prerequisite to develop accurate device models, from DC to GHz, including noise modeling and nonlinear HF effects, within a reasonable time. Designers need to learn to design for reliability and they should be educated on additional reliability analyses. The value is the reduction of failure and redesign costs.

Page generated in 0.0646 seconds