• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DEFORMATION BEHAVIOR OF A535 ALUMINUM ALLOY UNDER DIFFERENT STRAIN RATE AND TEMPERATURE CONDITIONS

2014 October 1900 (has links)
Aluminum alloys are a suitable substitution for heavy ferrous alloys in automobile structures. The purpose of this study was to investigate the flow stress behavior of as-cast and homogenized A535 aluminum alloy under various deformation conditions. A hot compression test of A535 alloy was performed in the temperature range of 473-673 K (200-400˚C) and strain rate range of 0.005-5 s-1 using a GleebleTM machine. Experimental data were fitted to Arrhenius-type constitutive equations to find material constants such as n, nʹ, β, A and activation energy (Q). Flow stress curves for as-cast and homogenized A535 alloy were predicted using an extended form of the Arrhenius constitutive equations. The dynamic shock load response of the alloy was studied using a split Hopkinson pressure bar (SHPB) test apparatus. The strain rate used ranged from 1400 s-1 to 2400 s-1 for as-cast and homogenized A535 alloy. The microstructures of the deformed specimens under different deformation conditions were analyzed using optical microscopy (OM) and scanning electron microscopy (SEM). Obtained true stress-true strain curves at elevated temperatures showed that the flow stress of the alloy increased by increasing the strain rate and decreasing the temperature for both as-cast and homogenized specimens. The homogenization heat treatment showed no effect on the mechanical behavior of the A535 alloy under hot deformation conditions. Hot deformation activation energy for both as-cast and homogenized A535 alloy was calculated to be 193 kJ/mol, which is higher than that for self-diffusion of pure aluminum (142 kJ/mol). The calculated stress values were compared with the measured ones and they showed good agreement by the correlation coefficient (R) of 0.997 and the average absolute relative error (AARE) of 6.5 %. The peak stress and the critical strain at the onset of thermal softening increased with strain rate for both the as-cast and homogenized A535 alloy. Homogenization heat treatment affected the high strain-rate deformation of the alloy, by increasing the peak stress and the thermal softening onset strain compared to those obtained for as-cast specimens. Deformed shear bands (DSBs) were formed in both the as-cast and homogenized A535 alloy in the strain rate range of 2000-2400 s-1.
2

Fabrication of Fine-Grained Magnesium Alloys and Their Mechanical Properties / 微細粒マグネシウム合金の創製とその機械的性質

Mohit, Joshi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20336号 / 工博第4273号 / 新制||工||1662(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 松原 英一郎, 教授 乾 晴行 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Modeling the Transient Effects during the Hot-Pressing of Wood-Based Composites

Zombori, Balazs Gergely 27 April 2001 (has links)
A numerical model based on fundamental engineering principles was developed and validated to establish a relationship between process parameters and the final properties of woodbased composite boards. The model simulates the mat formation, then compresses the reconstituted mat to its final thickness in a virtual press. The number of interacting variables during the hot-compression process is prohibitively large to assess a wide variety of data by experimental means. Therefore, the main advantage of the model based approach that the effect of the hot-compression parameters on the final properties of wood-based composite boards can be monitored without extensive experimentation. The mat formation part of the model is based on the Monte Carlo simulation technique to reproduce the spatial structure of the mat. The dimensions and the density of each flake are considered as random variables in the model, which follow certain probability density distributions. The parameters of these distributions are derived from data collected on industrial flakes by using an image analysis technique. The model can simulate the structure of a threelayer oriented strandboard (OSB) mat as well as the structure of random fiber networks. A grid is superimposed on the simulated mat and the number of flakes, the thickness, and the density of the mat at each grid point are computed. Additionally, the model predicts the change in several void volume fractions within the mat and the contact area between the flakes during consolidation. The void volume fractions are directly related to the physical properties of the mat, such as thermal conductivity, diffusivity, and permeability, and the contact area is an indicator of the effectively bonded area within the mat. The heat and mass transfer part of the model predicts the change of air content, moisture content, and temperature at designated mesh points in the cross section of the mat during the hotcompression. The water content is subdivided into vapor and bound water components. The free water component is not considered in the model due to the low (typically 6-7 %) initial moisture content of the flakes. The gas phase (air and vapor) moves by bulk flow and diffusion, while the bound water only moves by diffusion across the mat. The heat flow occurs by conduction and convection. The spatial derivatives of the resulting coupled partial differential equations are discretized by finite differences. The resulting ordinary differential equation in time is solved by a differential-algebraic system solver (DDASSL). The internal environment within the mat can be predicted among different initial and boundary conditions by this part of the hot-compression model. In the next phase of the research, the viscoelastic (time, temperature, and moisture dependent) response of the flakes was modeled using the time-temperature-moisture superposition principle of polymers. A master curve was created from data available in the literature, which describes the changing relaxation modulus of the flakes as a function of moisture and temperature at different locations in the mat. Then the flake mat was compressed in a virtual press. The stress-strain response is highly nonlinear due to the cellular structure of the mat. Hooke's Law was modified with a nonlinear strain function to account for the behavior of the flake mat in transverse compression. This part of the model gives insight into the vertical density profile formation through the thickness of the mat. Laboratory boards were produced to validate the model. A split-plot experimental design, with three different initial mat moisture contents (5, 8.5, 12 %), three final densities (609, 641, 673 kg êm3 or 38, 40, 42 lb ê ft3), two press platen temperatures (150, 200 °C), and three different press closing times (40, 60, 80 s) was applied to investigate the effect of production parameters on the internal mat conditions and the formation of the vertical density profile. The temperature and gas pressure at six locations in the mat, and the resultant density profiles of the laboratory boards, were measured. Adequate agreement was found between the model predicted and the experimentally measured temperature, pressure, and vertical density profiles. The complete model uses pressing parameters (press platen temperature, press schedule) and mat properties (flake dimensions and orientation, density distribution, initial moisture content and temperature) to predict the resulting internal conditions and vertical density profile formation within the compressed board. The density profile is related to all the relevant mechanical properties (bending strength, modulus of elasticity, internal bond strength) of the final board. The model can assist in the optimization of the parameters for hot-pressing woodbased composites and improve the performance of the final panel. / Ph. D.
4

Obtenção e caracterização de compósitos de epóxi/microfibras elastoméricas/fibras de carbono para aplicações aeronáuticas /

Oliveira, Juliana Bovi de. January 2020 (has links)
Orientador: Edson Cocchieri Botelho / Resumo: Esta pesquisa visa o processamento de compósitos termorrígidos laminados multifuncionais, via moldagem por compressão a quente, constituídos por fibras de carbono, resina epóxi e mantas de poli(butadieno) (BR) produzidas via processo de eletrofiação. Estas mantas têm como função proporcionar maior tenacidade ao compósito obtido, aumentando sua tolerância ao dano e consequentemente, elevando sua aplicabilidade no setor aeroespacial. Para o desenvolvimento deste trabalho de pesquisa, primeiramente, foram produzidas mantas de poli(butadieno) por eletrofiação. Todas as condições de processamento foram avaliadas nesta etapa do projeto. Posteriormente, estas mantas foram utilizadas para a obtenção de diferentes compósitos com resina epóxi e fibra de carbono, utilizando-se oito distintas configurações, processados via moldagem por compressão a quente. A qualidade dos compósitos fabricados foi avaliada a partir de ensaios de digestão ácida, microscopia, análise dinâmico mecânica (DMA) e inspeção acústica por ultrassom. Com o intuito de se avaliar eventuais ganhos na tenacidade à fratura dos laminados, foram realizados ensaios de excitação por impulso e resistência ao impacto, o qual foi seguido pela técnica de ultrassom. Também foram realizados ensaios de End-Notched Flexure (ENF) pelo modo II de fratura (modo de deslizamento) e ensaios de cisalhamento interlaminar (ILSS) e após os respectivos ensaios, os compósitos também foram avaliados por microscopia. A partir da técnica de eletr... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: This research aims the processing of multifunctional laminated thermosetting composites by hot compression molding, consisting of carbon fibers, epoxy resin and polybutadiene (BR) mats produced by electrospinning. These mats can provide greater toughness to the composite obtained, increasing its damage tolerance and consequently increasing its applicability in the aerospace field. For the development of this research, polybutadiene mats were produced by the electrospinning process. All processing conditions were evaluated at this stage of the project. Subsequently, these mats were used to obtain different epoxy resin/ carbon fiber composites with 8 distinct configurations, processed by hot compression molding process. The quality of the manufactured composites was evaluated using acid digestion tests, microscopy, dynamic mechanical analysis (DMA) and acustic inspection by ultrasound. After processing, in order to evaluate possible gains in fracture toughness, these laminates were submitted impulse excitation tests, impact resistance, and after tests the specimens were analyzed by ultrasound. Also, End-Notched Flexure (ENF) testes were performed using mode II fracture (sliding mode) and interlaminar shear tests (ILSS) and after the respective tests, the composites were also evaluated by microscopy. Using the electrospinning technique, it was possible to manufacture polybutadiene microfibers successfully, and use them to process laminated composites consisting of carbon fibers ... (Complete abstract click electronic access below) / Doutor
5

Processamento e caracterização de compósitos multifuncionais de resina furfurílica/CNT/fibra de carbono /

Conejo, Luíza dos Santos. January 2019 (has links)
Orientador: Edson Cocchieri Botelho / Resumo: Este trabalho de pesquisa consiste na obtenção e caracterizações térmica, mecânica, reológica e elétrica de compósitos multifuncionais obtidos a partir da utilização de fibras de carbono (FC), resina furfurílica (RF) e nanotubos de carbono (CNT) para aplicações aeroespaciais. O uso de uma bioresina como fonte alternativa ao petróleo em compósitos multifuncionais e a avaliação dos ganhos de propriedades na utilização de nanotubos de carbono (0, 1,3 e 2,5% em volume) associados a fibras contínuas de carbono (tecido plain weave) são os objetivos principais deste trabalho. O desenvolvimento deste trabalho de pesquisa estabelece os parâmetros de processo mais adequados para a obtenção de compósitos multifuncionais com propósitos estruturais, térmicos e/ou elétricos. Neste trabalho, os compósitos multifuncionais foram processados com a utilização de moldagem por compressão a quente, sendo esta uma das contribuições desta dissertação. Após processados, os laminados foram avaliados a partir de ensaios mecânicos (cisalhamento interlaminar por compression shear test (CST), impacto a baixas velocidades, DCB (Double Cantilever Beam test), ENF (End Notched Flexure) e fadiga); assim como, a partir de análises térmicas (DMA (Análise Dinâmico-Mecânica), DSC (Calorimetria Exploratória Diferencial), TGA (Análise Termogravimétrica) e TMA (Análise Termomecânica)), ensaios elétricos, análises morfológicas (MO (Microscopia Óptica), MEV (Microscopia Eletrônica de Varredura) e ultrassom) e análises ... (Resumo completo, clicar acesso eletrônico abaixo) / Doutor
6

Deformation Behaviour, Microstructure and Texture Evolution of CP Ti Deformed at Elevated Temperatures

Zeng, Zhipeng January 2009 (has links)
In the present work, deformation behavior, texture and microstructure evolution of commercially pure titanium (CP Ti) are investigated by electron backscattered diffraction (EBSD) after compression tests at elevated temperatures. By analysing work hardening rate vs. flow stress, the deformation behaviour can be divided into three groups, viz. three-stage work hardening, two-stage work hardening and flow softening. A new deformation condition map is presented, dividing the deformation behavior of CP Ti into three distinct zones which can be separated by two distinct values of the Zener-Hollomon parameter. The deformed microstructures reveal that dynamic recovery is the dominant deformation mechanism for CP Ti during hot working. It is the first time that the Schmid factor and pole figures are used to analyse how the individual slip systems activate and how their activities evolve under various deformation conditions. Two constitutive equations are proposed in this work, one is for single peak dynamic recrystallization (DRX), the other is specially for CP Ti deformed during hot working. After the hot compression tests, some stress-strain curves show a single peak, leading to the motivation of setting up a DRX model. However, the examinations of EBSD maps and metallography evidently show that the deformation mechanism is dynamic recovery rather than DRX. Then, the second model is set up. The influence of the deformation conditions on grain size, texture and deformation twinning is systematically investigated. The results show that {10-12} twinning only occurs at the early stage of deformation. As the strain increases, the {10-12} twinning is suppressed while {10- 11} twinning appears. Three peaks are found in the misorientation frequency-distribution corresponding to basal fiber texture, {10-11} and {10-12} twinning, respectively. A logZ-value of 13 is found to be critical for both the onset of {10-11} compressive twinning and the break point for the subgrain size. The presence of {10-11} twinning is the key factor for effectively reducing the deformed grain size. The percentage of low angle grain boundaries decreases with increasing Z-parameter, falling into a region separated by two parallel lines with a common slope and 10% displacement. After deformation, three texture components can be found, one close to the compression direction, CD, one 10~30° to CD and another 45° to CD. / QC 20100819

Page generated in 0.0829 seconds