Spelling suggestions: "subject:"hotstage microscopy"" "subject:"photostage microscopy""
1 |
Mesophase Formation in Heavy OilBagheri, Seyed Reza Unknown Date
No description available.
|
2 |
INFLUENCE OF FLUX DEPOSITION NON-UNIFORMITY ON MOLTEN METAL SPREADING IN ALUMINUM JOINING BY BRAZINGNarayanaswamy, Ramnath 01 January 2006 (has links)
The objective of this thesis is to study the effects of flux deposition non uniformity on spreading of molten metal. Flux deposition non-uniformity here means as to whether the amount of flux deposited in a non-uniform or uniform pattern helps in the better wetting and spreading characteristics of the molten metal or is detrimental to the process. The material selection constraint to the study was imposed by selecting brazing of aluminum i.e., aluminum alloy melting and flow over an aluminum alloy substrate. The study was carried out by conducting a number of Hot Stage microscopy tests using aluminum silicon alloy as the filler metal and Potassium Fluoro Aluminate (Nocolok) as the flux. The flux was applied in different spatial distribution patterns to uncover the varying effects of its distribution on spreading. The uneven pattern of flux deposition indicates the influence on spreading but due to the efficient spreading of flux prior to aluminum melting and associated fuzziness of the achieved coverage distribution the effects are not always conclusive. It has been concluded that non uniform flux deposition does not necessarily mean uneven or less uniform spreading of the molten liquid metal if the spreading of the molten flux is beyond the distance of ultimate metal spreading. This is because, in spite of uneven flux deposition, the flux melts approximately at 560C-570C and spreads on the surface of the metal thereby promoting appreciable spreading and wetting of the molten liquid metal that happens at temperatures above 577C.
|
3 |
INFLUENCE OF SURFACE ROUGHNESS OF COPPER SUBSTRATE ON WETTING BEHAVIOR OF MOLTEN SOLDER ALLOYSNalagatla, Dinesh Reddy 01 January 2007 (has links)
The objective of this study is to understand the effect of surface roughness of the Cu substrate on the wetting of molten solder alloys. Eutectic Sn-Pb, pure Sn and eutectic Sn-Cu solder alloys and Cu substrates with different surface finish viz., highly polished surface, polished surface and unpolished surface were used in this work. Highly polished surface was prepared in Metallography lab, University of Kentucky while other two substrates were obtained from a vendor. Surface roughness properties of each substrate were measured using an optical profilometer. Highly polished surface was found to be of least surface roughness, while unpolished surface was the roughest. Hot-stage microscopy experiments were conducted to promote the wetting behavior of each solder on different Cu substrates. Still digital images extracted from the movies of spreading recorded during hot-stage experiments were analyzed and data was used to generate the plots of relative area of spread of solder versus time. The study of plots showed that surface roughness of the Cu substrate had major influence on spreading characteristics of eutectic Sn-Pb solder alloy. Solder showed better spreading on the Cu substrate with least surface roughness than the substrates with more roughness. No significant influence of surface roughness was observed on the wetting behavior of lead free solders (pure Sn and eutectic Sn-Cu).
|
4 |
Efavirenz pre-formulation study : selection of a cyclodextrin inclusion complex or co-crystal complex for tablettingRafieda, Ali Mohamed Omar January 2015 (has links)
>Magister Scientiae - MSc / Efavirenz is a non-nucleoside reverse transcriptase inhibitor used as an anti-retroviral for the treatment of human immunodeficiency virus (HIV) type I. It is classified as a class IΙ drug under the Biopharmaceutical Classification System (BCS) and exhibits a low solubility (aqueous solubility of 9.0 μg/ml) and high permeability (variable oral bioavailability). This study aims to choose a pre-formulation protocol with the best efavirenz derivative in literature between co-crystals and CD inclusion complexes. Upon selection of the efavirenz derivative, the complications of both small scale and large scale laboratory pre-formulation production is highlighted for formulation of a tablet dosage form. Numerous variables were selected for the pre-formulation protocol. Physical, chemical, pharmacological, pharmaceutical and economical variables were investigated. Citric acid monohydrate (CTRC) was chosen as the best co-former for a co-crystal while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was selected as a host for an inclusion complex. Pharmaceutically, the angle of repose, Carr’s index, Hausner’s ratio, moisture content, disintegration time, hardness/resistance to crush, manufacturing process problems and particle size of the CTRC and HP-β-CD were all evaluated. The CTRC was ultimately selected for formulation of a tablet. The preparation of small laboratory scale of EFA/CTRC co-crystal was successfully achieved after several attempts. The large laboratory scale of EFA/CTRC was prepared under various environmental seasons which were indicated as batches 1-6 for purposes of this study. Characterization of the large laboratory scale EFA/CTRC co-crystals was performed by scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and by physical inspection (i.e. season, texture, colour, shape and particle size) of the EFA/CTRC product. Batch 1 and 2 were prepared during the summer season. The SEM analysis showed that the particles were needle-like shaped. The thermal analysis values of batch 1 by HSM, DSC and TGA results were 123 °C, 119 °C and 1.68 % of mass loss, respectively. In batch 2, morphology results by SEM revealed spikes of irregular and agglomerated particles. Batch 2 melted at 123 °C and a small unmelted quantity was observed at 143 °C. The DSC and TGA (mass loss) analysis were 118 °C and 0.75 %
respectively. The hardness test of EFA/CTRC tablet prepared in batch 2 was extremely hard hence failed the disintegration test. The EFA/CTRC prepared in batches 3, 4 and 5 was during the winter season which is associated with high humidity and wet weather conditions. The SEM, DSC, TGA results were significantly different from the previous batches. The SEM morphology was highly irregular particles for batch 3, clustered and randomly size particle for batch 4 and irregular, needle-like, spikes and spherical shaped particles for batch 5, respectively. The thermal results HSM, DSC and TGA confirmed the presence of moisture in the prepared EFA/CTRC products. The HSM melting point results of batches 3, 4 and 5 were 123 °C, 115 °C and 121 °C, respectively. The DSC results of 110 °C, 105 °C and 118 °C were observed for batches 3, 4 and 5 respectively. The mass loss i.e. TGA results for batches 3, 4 and 5 were 1.178%, 1.5 % and 2.235 % respectively. In batch 6, EFA/CTRC was prepared using a different commercial batch of EFA and CTRC. The SEM results indicated the formation of needle-like and clustered particles. The values obtained from HSM, DSC and TGA results were 124 °C, 114 °C and 0.54 % in mass loss. The physical appearance of EFA/CTRC prepared from batch 1 and 2 were white in colour while batch 3, 4, 5 and 6 of the prepared EFA/CTRC was pink in colour. The physical appearance of the individual batches differed but the identity of the sample remained intact implying the same pharmacological effects with differing pharmaceutical properties impacting the dosage form preparation.
|
5 |
The Kinetics of Thermal Decomposition and Hot-Stage Microscopy of Selected Energetic CocrystalsJoshua Trevett Dean (8782151) 29 April 2020 (has links)
<p>The thermal decomposition of four energetic cocrystals
composed of 4-amino-3,5-dinitropyrazole (ADNP)/diaminofurazan (DAF),
2,4,6-trinitrotoluene (TNT)/
2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL20), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane
(HMX)/CL20, and 1-methyl-3,5-dinitro-1,2,4-triazole (MDNT)/CL20 were studied
using simultaneous differential scanning calorimetry (DSC), thermogravimetry
analysis (TGA), and hot-stage microscopy. The kinetic parameters of their
thermal decomposition reaction were determined using the Kissinger and Ozawa
kinetic analysis methods. Each cocrystal’s peak exothermic temperature
(decomposition temperature), activation energy, and pre-exponential constant are
reported. Furthermore, these parameters from each cocrystal were compared to
the same parameters from the corresponding stoichiometric physical mixture in
order to identify changes in behavior attributable to the cocrystallization
process. For ADNP/DAF, the cocrystal shows an 8% increase in the peak exotherm
temperature and a 11-13% decrease in peak activation energy as compared to its
physical mixture. For TNT/CL20, this comparison shows a much smaller change in
the peak exotherm temperature (<1%) but shows a 5% decrease in activation
energy. This cocrystal also experiences phase stabilization—where a phase
transition of one or both coformers is omitted from the decomposition process. The
HMX/CL20 cocrystal shows a 1% change in the peak exotherm temperature and shows
a 2% increase in activation energy. Finally, for MDNT/CL20, this comparison
shows nearly a 4% increase and a drastic decrease in peak activation energy by 42-44%.
Cocrystallization clearly affects the thermal decomposition and reaction
kinetics of these materials, offering the potential to create a hybrid-class of
energetic materials which combines the high performance of an energetic
material with the safety and insensitivity of another. </p>
|
6 |
Decomposition of ammonium perchlorate encapsulated nanoscale and micron-scale catalyst particlesSpencer A Fehlberg (8774588) 29 April 2020 (has links)
<p>Iron oxide is the most common catalyst in
solid rocket propellant. We have previously demonstrated increased performance
of propellant by encapsulating iron oxide particles within ammonium perchlorate
(AP), but only nanoscale particles were used, and encapsulation was only
accomplished in fine AP (~20 microns in diameter). In this study, we extended the
size of particle inclusions to micron-scale within the AP particles as well the
particle sizes of the AP-encapsulated catalyst particles (100s of microns) using
fractional crystallization techniques with the AP-encapsulated particles as
nucleation sites for precipitation. Here we report catalyst particle inclusions
of micron-scale, as well as nanoscale, within AP and present characterization
of this encapsulation. Encapsulating micron-sized particles and growing these
composite particles could pave the way for numerous possible applications. A
study of the thermal degradation of these AP-encapsulated particles compared
against a standard mixture of iron oxide and AP showed that AP-encapsulated
micron-scale catalyst particles exhibited similar behavior to AP-encapsulated
nanoscale particles. Using computed tomography, we
found that catalyst particles were dispersed throughout the interior of coarse
AP-encapsulated micron-scale catalyst particles and decomposition was induced
within these particles around catalyst-rich regions.</p>
|
7 |
Co-crystal screening of poorly water-soluble active pharmaceutical ingredients. Application of hot stage microscopy on curcumin-nicotinamide system and construction of ternary phase diagram of fenbufen-nicotinamide-water co-crystal system.Chan, Hin Chung Stephen January 2009 (has links)
Curcumin is the major phenolic diarylheptane derivative in Curcuma longa and has been reported to possess pharmacological activities. Unfortunately this compound suffers from poor bioavailability and rapid neutral-alkaline degradation. Co-crystal of curcumin is one option under exploration, motivated by the fact that a number of active pharmaceutical ingredient (API) co-crystals with improved dissolution have recently been synthesized. Hence, co-crystallization technique highlights an alternative means to improve the performance of curcumin.
Within our work evidences for a co-crystal was ascertained from DSC, Kofler hot stage screening and PXRD, and all confirmed a new crystal phase could have been formed between curcumin and a co-crystallizing agent, nicotinamide. We report that re-crystallization step essentially aids the purification of commercial curcumin, a herbal based actives. Otherwise the prevalence of a new crystal phase in solvent-mediated co-crystallization will be significantly reduced.
Besides, phase diagram is an effective tool for the study of solubility behaviours in co-crystal system. In order to acquire related techniques, fenbufen, a poorly water soluble drug, was selected. The result showed the huge difference in solubility between fenbufen and nicotinamide lead to difficulty in the construction of phase diagram.
|
Page generated in 0.0693 seconds