Spelling suggestions: "subject:"humanrobot interaction"" "subject:"humanoidrobot interaction""
91 |
Requirements for effective collision detection on industrial serial manipulatorsSchroeder, Kyle Anthony 16 October 2013 (has links)
Human-robot interaction (HRI) is the future of robotics. It is essential in the expanding markets, such as surgical, medical, and therapy robots. However, existing industrial systems can also benefit from safe and effective HRI. Many robots are now being fitted with joint torque sensors to enable effective human-robot collision detection. Many existing and off-the-shelf industrial robotic systems are not equipped with these sensors. This work presents and demonstrates a method for effective collision detection on a system with motor current feedback instead of joint torque sensors. The effectiveness of this system is also evaluated by simulating collisions with human hands and arms. Joint torques are estimated from the input motor currents. The joint friction and hysteresis losses are estimated for each joint of an SIA5D 7 Degree of Freedom (DOF) manipulator. The estimated joint torques are validated by comparing to joint torques predicted by the recursive application of Newton-Euler equations. During a pick and place motion, the estimation error in joint 2 is less than 10 Newton meters. Acceleration increased the estimation uncertainty resulting in estimation errors of 20 Newton meters over the entire workspace. When the manipulator makes contact with the environment or a human, the same technique can be used to estimate contact torques from motor current. Current-estimated contact torque is validated against the calculated torque due to a measured force. The error in contact force is less than 10 Newtons. Collision detection is demonstrated on the SIA5D using estimated joint torques. The effectiveness of the collision detection is explored through simulated collisions with the human hands and arms. Simulated collisions are performed both for a typical pick and place motion as well as trajectories that transverse the entire workspace. The simulated forces and pressures are compared to acceptable maximums for human hands and arms. During pick and place motions with vertical and lateral end effector motions at 10mm/s and 25mm/s, the maximum forces and pressures remained below acceptable levels. At and near singular configurations some collisions can be difficult to detect. Fortunately, these configurations are generally avoided for kinematic reasons. / text
|
92 |
Design and Evaluation of Affective Serious Games for Emotion Regulation TrainingJerčić, Petar January 2015 (has links)
Emotions are thought to be one of the key factors that critically influences human decision-making. Emotion regulation can help to mitigate emotion related decision biases and eventually lead to a better decision performance. Serious games emerged as a new angle introducing technological methods to learning emotion regulation, where meaningful biofeedback information communicates player's emotional state. Games are a series of interesting choices, where design of those choices could support an educational platform to learning emotion regulation. Such design could benefit digital serious games as those choices could be informed though player's physiology about emotional states in real time. This thesis explores design and evaluation methods for creating serious games where emotion regulation can be learned and practiced. Design of a digital serious game using physiological measures of emotions was investigated and evaluated. Furthermore, it investigates emotions and the effect of emotion regulation on decision performance in digital serious games. The scope of this thesis was limited to digital serious games for emotion regulation training using psychophysiological methods to communicate player's affective information. Using the psychophysiological methods in design and evaluation of digital serious games, emotions and their underlying neural mechanism have been explored. Effects of emotion regulation have been investigated where decision performance has been measured and analyzed. The proposed metrics for designing and evaluating such affective serious games have been extensively evaluated. The research methods used in this thesis were based on both quantitative and qualitative aspects, with true experiment and evaluation research, respectively. Digital serious games approach to emotion regulation was investigated, player's physiology of emotions informs design of interactions where regulation of those emotions could be practiced. The results suggested that two different emotion regulation strategies, suppression and cognitive reappraisal, are optimal for different decision tasks contexts. With careful design methods, valid serious games for training those different strategies could be produced. Moreover, using psychophysiological methods, underlying emotion neural mechanism could be mapped. This could inform a digital serious game about an optimal level of arousal for a certain task, as evidence suggests that arousal is equally or more important than valence for decision-making. The results suggest that it is possible to design and develop digital serious game applications that provide helpful learning environment where decision makers could practice emotion regulation and subsequently improve their decision-making. If we assume that physiological arousal is more important than physiological valence for learning purposes, results show that digital serious games designed in this thesis elicit high physiological arousal, suitable for use as an educational platform.
|
93 |
Breaking the typecast: Revising roles for coordinating mixed teamsLong, Matthew T 01 June 2007 (has links)
Heterogeneous multi-agent systems are currently used in a wide variety of situations, including search and rescue, military applications, and off-world exploration, however it is difficult to understand the actions of these systems or naturalistically assign these mixed teams to tasks. These agents, which may be human, robot or software, have different capabilities but will need to coordinate effectively with humans in order to operate. The first and largest contributing factor to this challenge is the processing, understanding and representing of elements of the natural world in a manner that can be utilized by artificial agents. A second contributing factor is that current abstractions and robot architectures are ill-suited to address this problem. This dissertation addresses the lack of a high-level abstraction for the naturalistic coordination of teams of heterogeneous robots, humans and other agents through the development of roles.
Roles are a fundamental concept of social science that may provide this necessary abstraction. Roles are not a new concept and have been used in a number of related areas. This work draws from these fields and constructs a coherent and usable model of roles for robotics. This research is focussed on answering the following question: Can the use of social roles enable the naturalistic coordinated operation of robots in a mixed setting? In addition to this primary question, related research includes defining the key concepts important to artificial systems, providing a mapping and implementation from these concepts to a usable robot framework and identifies a set of robot-specific roles used for human-robot interaction. This research will benefit both the artificial intelligence agent and robotics communities. It poses a fundamental contribution to the multi-agent community because it extends and refines the role concept.
The application of roles in a principled and complete implementation is a novel contribution to both software and robotic agents. The creation of an open source operational architecture which supports taskable robots is also a major contribution.
|
94 |
Lexical vagueness handling using fuzzy logic in human robot interactionGuo, Xiao January 2011 (has links)
Lexical vagueness is a ubiquitous phenomenon in natural language. Most of previous works in natural language processing (NLP) consider lexical ambiguity as the main problem in natural language understanding rather than lexical vagueness. Lexical vagueness is usually considered as a solution rather than a problem in natural language understanding since precise information is usually failed to be provided in conversations. However, lexical vagueness is obviously an obstacle in human robot interaction (HRI) since the robots are expected to precisely understand their users' utterances in order to provide reliable services to their users. This research aims to develop novel lexical vagueness handling techniques to enable service robots to precisely understand their users' utterance so that they can provide the reliable services to their users. A novel integrated system to handle lexical vagueness is proposed in this research based on an in-depth understanding of lexical ambiguity and lexical vagueness including why they exist, how they are presented, what differences are in between them, and the mainstream techniques to handle lexical ambiguity and lexical vagueness. The integrated system consists of two blocks: the block of lexical ambiguity handling and the block of lexical vagueness handling. The block of lexical ambiguity handling first removes syntactic ambiguity and lexical ambiguity. The block of lexical vagueness handling is then used to model and remove lexical vagueness. Experimental results show that the robots endowed with the developed integrated system are able to understand their users' utterances. The reliable services to their users, therefore, can be provided by the robots.
|
95 |
Framing Human-Robot Task Communication as a Partially Observable Markov Decision ProcessWoodward, Mark P. 10 August 2012 (has links)
As general purpose robots become more capable, pre-programming of all tasks at the factory will become less practical. We would like for non-technical human owners to be able to communicate, through interaction with their robot, the details of a new task; I call this interaction "task communication". During task communication the robot must infer the details of the task from unstructured human signals, and it must choose actions that facilitate this inference. In this dissertation I propose the use of a partially observable Markov decision process (POMDP) for representing the task communication problem; with the unobservable task details and unobservable intentions of the human teacher captured in the state, with all signals from the human represented as observations, and with the cost function chosen to penalize uncertainty. This dissertation presents the framework, works through an example of framing task communication as a POMDP, and presents results from a user experiment where subjects communicated a task to a POMDP-controlled virtual robot and to a human controlled virtual robot. The task communicated in the experiment consisted of a single object movement and the communication in the experiment was limited to binary approval signals from the teacher. This dissertation makes three contributions: 1) It frames human-robot task communication as a POMDP, a widely used framework. This enables the leveraging of techniques developed for other problems framed as a POMDP. 2) It provides an example of framing a task communication problem as a POMDP. 3) It validates the framework through results from a user experiment. The results suggest that the proposed POMDP framework produces robots that are robust to teacher error, that can accurately infer task details, and that are perceived to be intelligent. / Engineering and Applied Sciences
|
96 |
Compliance Control of Robot Manipulator for Safe Physical Human Robot InteractionAhmed, Muhammad Rehan January 2011 (has links)
Inspiration from biological systems suggests that robots should demonstrate same level of capabilities that are embedded in biological systems in performing safe and successful interaction with the humans. The major challenge in physical human robot interaction tasks in anthropic environment is the safe sharing of robot work space such that robot will not cause harm or injury to the human under any operating condition. Embedding human like adaptable compliance characteristics into robot manipulators can provide safe physical human robot interaction in constrained motion tasks. In robotics, this property can be achieved by using active, passive and semi active compliant actuation devices. Traditional methods of active and passive compliance lead to complex control systems and complex mechanical design. In this thesis we present compliant robot manipulator system with semi active compliant device having magneto rheological fluid based actuation mechanism. Human like adaptable compliance is achieved by controlling the properties of the magneto rheological fluid inside joint actuator. This method offers high operational accuracy, intrinsic safety and high absorption to impacts. Safety is assured by mechanism design rather than by conventional approach based on advance control. Control schemes for implementing adaptable compliance are implemented in parallel with the robot motion control that brings much simple interaction control strategy compared to other methods. Here we address two main issues: human robot collision safety and robot motion performance.We present existing human robot collision safety standards and evaluate the proposed actuation mechanism on the basis of static and dynamic collision tests. Static collision safety analysis is based on Yamada’s safety criterion and the adaptable compliance control scheme keeps the robot in the safe region of operation. For the dynamic collision safety analysis, Yamada’s impact force criterion and head injury criterion are employed. Experimental results validate the effectiveness of our solution. In addition, the results with head injury criterion showed the need to investigate human bio-mechanics in more details in order to acquire adequate knowledge for estimating the injury severity index for robots interacting with humans. We analyzed the robot motion performance in several physical human robot interaction tasks. Three interaction scenarios are studied to simulate human robot physical contact in direct and inadvertent contact situations. Respective control disciplines for the joint actuators are designed and implemented with much simplified adaptable compliance control scheme. The series of experimental tests in direct and inadvertent contact situations validate our solution of implementing human like adaptable compliance during robot motion and prove the safe interaction with humans in anthropic domains.
|
97 |
An Augmented Reality Human-Robot Collaboration SystemGreen, Scott Armstrong January 2008 (has links)
Although robotics is well established as a research field, there has been relatively little work on human-robot collaboration. This type of collaboration is going to become an increasingly important issue as robots work ever more closely with humans. Clearly, there is a growing need for research on human-robot collaboration and communication between humans and robotic systems.
Research into human-human communication can be used as a starting point in developing a robust human-robot collaboration system. Previous research into collaborative efforts with humans has shown that grounding, situational awareness, a common frame of reference and spatial referencing are vital in effective communication. Therefore, these items comprise a list of required attributes of an effective human-robot collaborative system.
Augmented Reality (AR) is a technology for overlaying three-dimensional virtual graphics onto the user's view of the real world. It also allows for real time interaction with these virtual graphics, enabling a user to reach into the augmented world and manipulate it directly. The internal state of a robot and its intended actions can be displayed through the virtual imagery in the AR environment. Therefore, AR can bridge the divide between human and robotic systems and enable effective human-robot collaboration.
This thesis describes the work involved in developing the Augmented Reality Human-Robot Collaboration (AR-HRC) System. It first garners design criteria for the system from a review of communication and collaboration in human-human interaction, the current state of Human-Robot Interaction (HRI) and related work in AR. A review of research in multimodal interfaces is then provided highlighting the benefits of using such an interface design. Therefore, an AR multimodal interface was developed to determine if this type of design improved performance over a single modality design. Indeed, the multimodal interface was found to improve performance, thereby providing the impetus to use a multimodal design approach for the AR-HRC system.
The architectural design of the system is then presented. A user study conducted to determine what kind of interaction people would use when collaborating with a mobile robot is discussed and then the integration of a mobile robot is described. Finally, an evaluation of the AR-HRC system is presented.
|
98 |
Optimal behavior composition for roboticsBartholomew, Paul D. 22 May 2014 (has links)
The development of a humanoid robot that mimics human motion requires extensive programming as well as understanding the motion limitations of the robot. Programming the countless possibilities for a robot’s response to observed human motion can be time consuming. To simplify this process, this thesis presents a new approach for mimicking captured human motion data through the development of a composition routine. This routine is built upon a behavior-based framework and is coupled with optimization by calculus to determine the appropriate weightings of predetermined motion behaviors. The completion of this thesis helps to fill a void in human/robot interactions involving mimicry and behavior-based design. Technological advancements in the way computers and robots identify human motion and determine for themselves how to approximate that motion have helped make possible the mimicry of observed human subjects. In fact, many researchers have developed humanoid systems that are capable of mimicking human motion data; however, these systems do not use behavior-based design. This thesis will explain the framework and theory behind our optimal behavior composition algorithm and the selection of sinusoidal motion primitives that make up a behavior library. This algorithm breaks captured motion data into various time intervals, then optimally weights the defined behaviors to best approximate the captured data. Since this routine does not reference previous or following motion sequences, discontinuities may exist between time intervals. To address this issue, the addition of a PI controller to regulate and smooth out the transitions between time intervals will be shown. The effectiveness of using the optimal behavior composition algorithm to create an approximated motion that mimics capture motion data will be demonstrated through an example configuration of hardware and a humanoid robot platform. An example of arm motion mimicry will be presented and includes various image sequences from the mimicry as well as trajectories containing the joint positions for both the human and the robot.
|
99 |
Towards quantifying upper-arm rehabilitation metrics for children through interaction with a humanoid robotBrooks, Douglas A. 24 April 2012 (has links)
The objective of this research effort is to further rehabilitation techniques for children by developing and validating the core technologies needed to integrate therapy instruction with child-robot play interaction in order to improve upper-arm rehabilitation. Using computer vision techniques such as Motion History Imaging (MHI), Multimodal Mean, edge detection, and Random Sample Consensus (RANSAC), movements can be quantified through robot observation. Also incorporating three-dimensional data obtained via an infrared projector coupled with a Principle Component Analysis (PCA), depth information can be utilized to create a robust algorithm. Finally, utilizing prior knowledge regarding exercise data, physical therapeutic metrics, and novel approaches, a mapping to therapist instructions can be created allowing robotic feedback and intelligent interaction.
|
100 |
Human coordination of robot teams an empirical study of multimodal interface design /Cross, E. Vincent. Gilbert, Juan E., January 2009 (has links)
Thesis (Ph. D.)--Auburn University. / Abstract. Includes bibliographical references (p. 86-89).
|
Page generated in 0.0937 seconds