• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 32
  • 10
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Humidification-dehumidification desalination process: Performance evaluation and improvement through experimental and numerical methods

Kaunga, Damson, Patel, Rajnikant, Mujtaba, Iqbal M. 25 March 2022 (has links)
Yes / Models’ accuracy and reliability are important factors for designers of the humidification-dehumidification (HDH) desalination systems. A model used for designing the system must consider all important parameters in order to maintain high accuracy over the wide range of fluctuating conditions. The empirical models for HDH systems which are mostly available in literature are simple and easy to develop but also have limited predictive accuracy for extreme conditions because of consideration of only a few of many influential parameters. Usage of these models may lead to an expensive redesign at latter stages in development of the real system. Therefore, the aim of this paper is to propose the mechanistic model of the HDH desalination process with an improved prediction accuracy as an alternative to conventional models. This model is developed by coupling the heat and mass transfer equations at the water–air interface into enthalpy equations. Performances of the proposed model and an empirical model from literature are compared against experimental data obtained from the HDH system, which is also designed in this work. Results show the proposed model has relatively low mean square error (0.4) hence more accurate than the empirical model with mean square error of 7. It was also found that, the recovery ratio attained by the system increases substantially with an increase of the feed water temperature, but decreases with an increase of water-to-air flow ratio. Freshwater productivity increases with an increasing packing's specific area while doubling of dehumidifiers’ surface area improves the recovery ratio by 16%.
2

Humidification in Evaporative Power Cycles

Dalili, Farnosh January 2003 (has links)
Evaporative gas turbine cycles (EvGT) show an exceptionalexhaust heat recovery potential, which makes them a strongcompetitor to other advanced gas turbine cycles, especiallyfrom small to intermediate sizes. Evaporative gas turbines aredistinguished by humidifying the working fluid beforecombustion at temperatures below the boiling point of water;and the heat required for evaporation of water is partly takenout of the exhaust gas. Thus, humidification is a key operationin these cycles. This thesis investigates, both theoreticallyand experimentally, two alternative approaches tohumidification: the packed-bed humidification tower and thetubular humidifier. Both these equipments involvecountercurrent contact between water and the working fluid.Humidifier design criteria are developed and criticalparameters such as flooding, wetting rate and entrainment arediscussed. The experimental parts were carried out on thepacked-bed tower in the EvGT pilot plant, and on a tubularhumidifier test rig especially erected for this purpose. Thetheoretical models were confirmed by the experiments. The height of a transfer unit, necessary for designingpacked beds, was calculated for the packing employed in theEvGT pilot plant. It was found that the data provided by themanufacturer may be used with minor corrections. The tubular test rig operated satisfactorily delivering hothumid air. The theoretical models coincided well with theexperimental results, verifying the design criteria developedhere. The heat transfer calculations indicated that mostresistance to heat transfer is on the exhaust gas side. Thus, asurface extended tube (Sunrod) was used in the test rig. Itcould be concluded that the tubular humidifier is a strongalternative to the packed-bedtower, especially in smallhigh-pressure gas turbines. Furthermore, the importance of the non-ideality of theair-water vapor mixture in modeling evaporative cycles wasfirst highlighted in this work. Through applying realthermodynamic properties of air-water vapor mixtures in cyclecalculations, it was found that the compressed air contains ahigher amount of moisture than indicated by the ideal gasmixture model. This affects the design of the heat recoverysystem and cannot be neglected. <b>Key words:</b>evaporative gas turbine, indirect-fired gasturbine, humidification, packed bed, tubular humidifier,evaporator, saturator.
3

Humidification in Evaporative Power Cycles

Dalili, Farnosh January 2003 (has links)
<p>Evaporative gas turbine cycles (EvGT) show an exceptionalexhaust heat recovery potential, which makes them a strongcompetitor to other advanced gas turbine cycles, especiallyfrom small to intermediate sizes. Evaporative gas turbines aredistinguished by humidifying the working fluid beforecombustion at temperatures below the boiling point of water;and the heat required for evaporation of water is partly takenout of the exhaust gas. Thus, humidification is a key operationin these cycles. This thesis investigates, both theoreticallyand experimentally, two alternative approaches tohumidification: the packed-bed humidification tower and thetubular humidifier. Both these equipments involvecountercurrent contact between water and the working fluid.Humidifier design criteria are developed and criticalparameters such as flooding, wetting rate and entrainment arediscussed. The experimental parts were carried out on thepacked-bed tower in the EvGT pilot plant, and on a tubularhumidifier test rig especially erected for this purpose. Thetheoretical models were confirmed by the experiments.</p><p>The height of a transfer unit, necessary for designingpacked beds, was calculated for the packing employed in theEvGT pilot plant. It was found that the data provided by themanufacturer may be used with minor corrections.</p><p>The tubular test rig operated satisfactorily delivering hothumid air. The theoretical models coincided well with theexperimental results, verifying the design criteria developedhere. The heat transfer calculations indicated that mostresistance to heat transfer is on the exhaust gas side. Thus, asurface extended tube (Sunrod) was used in the test rig. Itcould be concluded that the tubular humidifier is a strongalternative to the packed-bedtower, especially in smallhigh-pressure gas turbines.</p><p>Furthermore, the importance of the non-ideality of theair-water vapor mixture in modeling evaporative cycles wasfirst highlighted in this work. Through applying realthermodynamic properties of air-water vapor mixtures in cyclecalculations, it was found that the compressed air contains ahigher amount of moisture than indicated by the ideal gasmixture model. This affects the design of the heat recoverysystem and cannot be neglected.</p><p><b>Key words:</b>evaporative gas turbine, indirect-fired gasturbine, humidification, packed bed, tubular humidifier,evaporator, saturator.</p>
4

Efficiency Improvements in a Horizontal Humidification-Dehumidification Unit

January 2015 (has links)
abstract: The horizontal desalination units belonging to the humidification-dehumidification family purify water using air as a carrier gas. The temperature required for separation can vary from ambient to 99 °C so waste heat, fuel combustion, or solar collectors can drive the process. A unit in which air flows horizontally affords several advantages over similar vertical “Dewvaporation” towers (as an example), including ease of construction and potentially increased efficiency. The objective was to build and test horizontal units and identify areas of potential efficiency improvements. The desalination units consisted of: 1.) A series of aligned, corrugated, polypropylene sheets covered on the outside with absorbent, water-wettable cloth. 2.) A basin that caught saline water flowing downward from the absorbent cloth. 3.) Ten pumps to cycle the basin water back onto the cloth. 4.) An air blower on the front of the unit that drove air horizontally across the cloth, increasing the humidity of the air. 5.) A steam generator on the back of the unit producing steam that mixed with the incoming air to increase the temperature and humidity. 6) A steam box that caused the air to mix with the steam and return to flow inside the corrugations in the plastic sheets, creating a countercurrent heat exchanger as the exiting air transferred its heat to the incoming air and causing purified water to condense from the cooling, oversaturated air. The tested unit produced distillate at a rate of 0.87 gallons per hour with 13 parts per million total dissolved solids and an energy reuse factor of 2.5. Recommendations include the implementation of a continuous longitudinal pump design, a modification of the basin to accommodate top and bottom unit center dividers, increase in insulation coverage, and optimization of air flow rate. / Dissertation/Thesis / Masters Thesis Chemical Engineering 2015
5

Design and Membrane Selection for Gas to Gas Humidifiers for Fuel Cell Applications

Huizing, Ryan January 2007 (has links)
In its present form, polymer electrolyte membrane fuel cell (PEMFC) technology requires some method of humidification to ensure that high performance and long life of the fuel cell membrane is maintained. External humidification utilizing ‘gas to gas’ membrane based planar humidifiers is one method of humidifying fuel cell reactant gases. This type of humidification offers the benefit of recycling heat and moisture from the fuel cell exhaust, and returning it to the reactants entering the fuel cell. In designing a planar membrane based fuel cell humidifier the two important areas to be considered are: - humidifier channel and plate design; and - humidifier membrane selection. In this work a humidifier design procedure was developed based on prototype humidifier testing. This design procedure involves selection of design parameters based on a dimensionless parameter which describes the ratio of gas residence time, and water diffusion time from the membrane surface. Humidifiers of different flow channel geometries were created with a rapid prototyping technique. These humidifier units were tested at different operating conditions in an attempt to validate the design equations involving a design parameter which is the ratio between the residence times of gas in the humidifier over the diffusion time of water from the surface of the membrane into the channel. This parameter offers a good starting point for humidifier design, the target value of this parameter was found to be between 2.0 and 4.0, with a desired value of 3.0. A fuel cell stack humidifier design procedure and suggestions are presented based this parameter. The design also considers designing a humidifier on limited volume constraints in which the humidifier would have to fit into the fuel cell system. A membrane selection procedure was developed based on design criteria requirements developed during this work for the fuel cell humidifier. This criterion includes high water permeation, low air permeation, good mechanical strength, robust handling, and long lifetime under various operating conditions. . Specific values for membrane selection included a water flux of greater than 14 kg m-2 h-1 in a water permeation test, less than 3 cm3 min-1 cm-2 kPa-1 air permeation when the membrane was dry, and a lifetime of at least 1500 hours of operation without performance degradation. Sixty membranes from various sources were screened for candidacy for use in the humidifier application. Membranes which passed the initial screenings were tested for durability at high and moderate temperature conditions. These membranes were operated until failure, at which time analysis was completed to determine the failure modes of the membrane. Mitigation strategies were proposed when applicable. Recommendations were made for membrane materials for the proposed operating requirements. Suggested membranes materials included those based on UHMWPE and inorganic additives, as well as homogenous membranes based on Nylon 6,6, PEEK, and PFSA.
6

Design and Membrane Selection for Gas to Gas Humidifiers for Fuel Cell Applications

Huizing, Ryan January 2007 (has links)
In its present form, polymer electrolyte membrane fuel cell (PEMFC) technology requires some method of humidification to ensure that high performance and long life of the fuel cell membrane is maintained. External humidification utilizing ‘gas to gas’ membrane based planar humidifiers is one method of humidifying fuel cell reactant gases. This type of humidification offers the benefit of recycling heat and moisture from the fuel cell exhaust, and returning it to the reactants entering the fuel cell. In designing a planar membrane based fuel cell humidifier the two important areas to be considered are: - humidifier channel and plate design; and - humidifier membrane selection. In this work a humidifier design procedure was developed based on prototype humidifier testing. This design procedure involves selection of design parameters based on a dimensionless parameter which describes the ratio of gas residence time, and water diffusion time from the membrane surface. Humidifiers of different flow channel geometries were created with a rapid prototyping technique. These humidifier units were tested at different operating conditions in an attempt to validate the design equations involving a design parameter which is the ratio between the residence times of gas in the humidifier over the diffusion time of water from the surface of the membrane into the channel. This parameter offers a good starting point for humidifier design, the target value of this parameter was found to be between 2.0 and 4.0, with a desired value of 3.0. A fuel cell stack humidifier design procedure and suggestions are presented based this parameter. The design also considers designing a humidifier on limited volume constraints in which the humidifier would have to fit into the fuel cell system. A membrane selection procedure was developed based on design criteria requirements developed during this work for the fuel cell humidifier. This criterion includes high water permeation, low air permeation, good mechanical strength, robust handling, and long lifetime under various operating conditions. . Specific values for membrane selection included a water flux of greater than 14 kg m-2 h-1 in a water permeation test, less than 3 cm3 min-1 cm-2 kPa-1 air permeation when the membrane was dry, and a lifetime of at least 1500 hours of operation without performance degradation. Sixty membranes from various sources were screened for candidacy for use in the humidifier application. Membranes which passed the initial screenings were tested for durability at high and moderate temperature conditions. These membranes were operated until failure, at which time analysis was completed to determine the failure modes of the membrane. Mitigation strategies were proposed when applicable. Recommendations were made for membrane materials for the proposed operating requirements. Suggested membranes materials included those based on UHMWPE and inorganic additives, as well as homogenous membranes based on Nylon 6,6, PEEK, and PFSA.
7

Experimental Evaluation of the Effect of Inlet Gas Humidification on Fuel Cell Performance

Evans, John P. 06 October 2003 (has links)
The development and evaluation of a fuel cell test stand incorporating various methods for controlling the temperature and humidity of fuel cell reactants is described. The test stand is capable of accurately metering gas flows, controlling the temperature and humidity of the gases, and delivering the gases to the fuel cell in a safe manner. Additionally, the test stand can measure the voltage and current produced by the fuel cell during operation. Two test stands were constructed and evaluated, one using steam injection for fuel cell stacks and the other using flash evaporation for individual fuel cells. Both test stands were shown to provide adequate control at the upper end of the design range. The flash evaporation test apparatus was used to investigate the effect of inlet gas humidity on fuel cell performance. The results from this investigation showed that, for a fuel cell and reactant temperature of 75°C, the best performance was achieved with a high relative humidity (90%RH) for the hydrogen and a comparatively low relative humidity (60%) for the air. / Master of Science
8

Modelling and Simulation of Humidification-Dehumidification Process for Seawater Desalination Dual Powered by Biomass and Solar Energy

Kaunga, Damson, Patel, Rajnikant, Mujtaba, Iqbal M. 25 March 2022 (has links)
Yes / The use of solar thermal energy for water desalination processes is increasing rapidly, particularly in areas where these resources are plentiful. However, solar energy plants are highly affected by the intermittency of day -night cycles and by low irradiation seasons. Although biomass fuel can be used as source of energy for thermal desalination processes, these resources are becoming increasingly scarce, expensive and seasonally available. Integration of solar-biomass technologies for water desalination process may provide the solution to these challenges. This work investigates design options of the Humidification-Dehumidification desalination system integration with the solar-biomass energies. The investigation is based on simulation of the process models in gPROMS platform. Results show that the solar-biomass integrated plant with a thermal storage system can save up to 57 % of the daily energy cost compared to conventional biomass plant. The integrated plant also cuts the CO2 emission by 59 %. Moreover, it has higher daily production capacity than conventional solar plants. / The authors wish to thank the Commonwealth Scholarship Commission in the UK (CSC) for financial support under PhD Scholarships Plan for Low and Middle Income Countries.
9

Comportement mécanique et hydraulique des sols soumis à une pression interstitielle négative - Etude expérimentale et modélisation

Taibi, Said 20 December 1994 (has links) (PDF)
La thèse présente un ensemble de résultats expérimentaux sur des sols soumis à une pression interstitielle négative sur différents chemins : drainage- humidification, oedométrique, triaxial, etc... Ceux-ci mettent en évidence les différents domaines de comportement du sol et les aspects spécifiques du comportement dans chaque domaine : saturé, quasi-saturé faiblement saturé.<br />Parallèlement, une modélisation à partir d'arrangements réguliers de billes est proposée et validée par confrontation avec les résultats expérimentaux ; cette<br />approche permet d'expliquer un certain nombre de comportements observés dans la réalité et est à la base d'une modélisation élasto-plastique du comportement des sols partiellement saturés utilisant un concept de contraintes effectives généralisées.<br />L'étude est complétée par des mesures de perméabilités polyphasiques dans différents matériaux et la recherche d'une plus grande cohérence entre toutes les propriétés de ces matériaux.
10

Caracterização da matéria orgânica em processo de compostagem por métodos convencionais e espectroscópicos / Characterization of organic matter in composting process by conventional and spectroscopic methods

Fialho, Lucimar Lopes 10 December 2007 (has links)
A produção de resíduos orgânicos tem aumentado em anos recentes e uma alternativa para o seu aproveitamento é o processo de compostagem, no qual se desenvolvem reações bioquímicas para estabilização do material que estão diretamente associadas com a humificação da matéria orgânica. Considerando a complexidade das transformações no processo de humificação e a importância de se conhecer com maior precisão estas reações e as características dos materiais gerados, foi proposto neste trabalho um estudo detalhado do processo de compostagem. A combinação de métodos convencionais e técnicas espectroscópicas permitiu o monitoramento contínuo da compostagem, de diferentes resíduos orgânicos. Para execução dos experimentos foram montadas 6 leiras (L) de 3,6 m3 com os seguintes resíduos: poda de árvores, esterco bovino fresco, bagaço de laranja, torta de filtro e solução de ácido pirolenhoso (como possível catalisador do processo). O monitorado foi realizado por 7 meses com medidas diárias de temperatura, controle semanal do teor de umidade e coletas mensais das amostras para extração de ácidos húmicos e análises químicas. Foram observadas as fases típicas da temperatura em todas as leiras, exceto na L1 (constituída apenas de poda de árvores). Na fase termofílica a temperatura atingiu os 60 o C e esta fase permaneceu por, aproximadamente, 90 dias. Este também foi o tempo necessário para a estabilização da relação da capacidade de troca catiônica pelo teor de carbono do composto (CTC/C), que alcançou valores acima de 2,2 mmolc g-1 . As análises de macro e micronutrientes evidenciaram o potencial fertilizante dos compostos produzidos, cujos valores, para alguns elementos, estão acima dos limites exigidos pela Instrução Normativa no 23 do Ministério de Agricultura, Pecuária e Abastecimento. Já nas análises espectroscópicas foram encontrados índices de estabilização a partir dos espectros de fluorescência de luz UV - Vis. Estes apresentaram boa correlação com a razão C/N e os radicais livres orgânicos do tipo semiquinona, detectados por Ressonância Paramagnética Eletrônica. As correlações dos índices com a razão C/N mostraram que este último parâmetro tem limitação para monitorar a compostagem, pois a partir de 60 dias a relação C/N estabiliza, ainda na fase termofílica do processo, enquanto que os índices espectroscópicos continuam variando, indicando que o processo não se estabilizou completamente. Dentre as informações obtidas por fluorescência, foi possível identificar reações de transformação de moléculas orgânicas mais simples para estruturas mais complexas, detectadas através da diminuição de intensidade das bandas de emissão em comprimentos de onda menores (em torno de 300 nm) com simultâneo aumento da intensidade em regiões de maiores comprimentos de onda (próximos de 400 nm). Este comportamento também foi observado nos espectros de absorção UV - Vis. A partir dos dados de Ressonância Magnética Nuclear (RMN de 13 C) foi possível evidenciar a decomposição de estruturas como carboidratos, polissacarídeos e grupos alquil, assim como um aumento das estruturas aromáticas, durante o processo de humificação. Assim através da combinação das análises por métodos convencionais e espectroscópicos foram propostos indicadores analíticos mais sensíveis para o monitoramento e a caracterização da compostagem de resíduos orgânicos. / The production of organic residues has increased in recent years and an alternative to their recycling is the composting process, where various biochemical reactions are developed for the material stabilization. These reactions are directly associated with organic matter humification. Considering the complexity of the transformations occurred during the humification process and the importance of knowing these reactions and the characteristics of the produced materials more precisely, this work has proposed a detailed study of the composting process. The combination of conventional methods and spectroscopic techniques allowed the continuous composting assessment and monitoring from different organic residues. Six piles (P) of 3.6 m3 were assembled using the following residues: garden trimming, fresh cattle manure, orange pomace, filter cake and pyroligneous acid solution (used as possible catalyst of the process). The process was monitored for 7 months with daily measurements of temperature, weekly moisture control and monthly collection of samples for humic acid (HA) extraction and chemical analyses. Typical phases of temperature in all piles were observed, except for P1 (composed only garden trimming). In the thermophilic phase the temperature reached 60 o C and this phase remained for about 90 days. This was also the time necessary for stabilization of cation exchange capacity and total carbon ratio (CEC/C), which reached values above of 2.2 mmolc g-1 . The macro- and micronutrient analyses showed the fertilizer potential of the produced composts. Concentration values for same elements are above those required by Normative Instruction number 23 of the Brazilian Ministry of Agriculture Livestock and Food Supply. As a result of the spectroscopic analyses, stabilization indices were obtained from fluorescence spectra of UV-Visible light. These indices showed good correlation with C/N ratio and with the semiquinone-type free radical, detected by Electron Paramagnetic Resonance (EPR). The correlation of the indices with C/N ratio showed that the latter parameter has limitation to monitor the composting, because after 60 days the C/N ratio stabilizes and this occurs during the thermophilic phase, while the spectroscopic indices continue to change, which is an indicative that the process was not completely stabilized. Among several observations by fluorescence of UV-Visible light it was possible to identify transformation reactions of simpler organic molecules to more complex structures, which were detected by decrease in emission band intensity in shorter wavelengths (near 300 nm) with simultaneous increase in band intensity in longer wavelengths (near 400 nm). This behavior was also observed in the UV - Visible absorption spectra. It was possible to show the decomposition of carbohydrate type structures, polysaccharides and alkyl groups and the increase in aromatic structures, by 13 C Nuclear Magnetic Resonance (13C NMR), during humification process of the organic residues. Therefore, more sensible analytic indicators were proposed for monitoring and characterization of the composting of organic residues through the combination of conventional and spectroscopic methods.

Page generated in 0.1234 seconds