311 |
Development, setup and testing of a dynamic hydraulic fracture conductivity apparatusPongthunya, Potcharaporn 02 June 2009 (has links)
One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along the fracture face. The objectives of this research project were to design and set up an experimental apparatus for dynamic fracture conductivity testing and to create a fracture conductivity test workflow standard. This entirely new dynamic fracture conductivity measurement will be used to perform extensive experiments to study fracturing fluid cleanup characteristics and investigate damage resulting from unbroken polymer gel in the proppant pack. The dynamic fracture conductivity experiment comprises two parts: pumping fracturing fluid into the cell and measuring proppant pack conductivity. I carefully designed the hydraulic fracturing laboratory to provide appropriate scaling of the field conditions experimentally. The specifications for each apparatus were carefully considered with flexibility for further studies and the capability of each apparatus was defined. I generated comprehensive experimental procedures for each experiment stage. By following the procedure, the experiment can run smoothly. Most of dry runs and experiments performed with sandstone were successful.
|
312 |
Experimental Simulation on the pile toppling in the coast waterTseng, Mei-hui 08 September 2007 (has links)
This paper studies the relationship between the degree of compactness of the pile structure foundation and how it will tilt under different wave condition.
In the lab experiment setup, we use a periodic force generated by a magnetic coil to simulate the wave force impending on a scaled down model pile. With this setup, forces with different periods and magnitudes are used to find out the critical wave condition under which the pile will tilt, and it relationship with the results, engineering aspect of setting up a pile structure in the sea will have a better reference in the design stage.
|
313 |
Physical Modeling and Simulation Analysis of an Advanced Automotive Racing Shock Absorber using the 1D Simulation Tool AMESimSadeghi Reineh, Maryam January 2012 (has links)
Shock absorbers are crucial components of a vehicle’s chassis responsible for the trade-off between stability, handling, and passenger comfort. The aim of the thesis is to investigate the physical behavior of an advanced automotive racing shock absorber, known as TTR, developed by Öhlins Racing AB. This goal is achieved by developing a detailed lumped parameter numerical model of the entire TTR suspension in the advanced 1D simulation tool, AMESim. The shock absorber is mainly composed of the main cylinder with through-rod piston design and the gas reservoir located at the low pressure hydraulic line, which connects the compression and rebound sides. The mentioned sides are identical in terms of the components which are a High Speed Adjuster, a Low Speed Adjuster, and a check valve mounted in parallel. The adjusters are special hydraulic valves, which can be modified in terms of flow metering characteristics by means of external accessible screws. Adjustment is done in a series of discrete numbers called ‘clicks’. A fixed orifice and a spring-loaded poppet valve are responsible for controlling the piston low and high speed regions respectively. The developed AMESim numerical model is capable of capturing the physics behind the real shock absorber damping characteristics, under both static and dynamic conditions. The model is developed mainly using the standard AMESim mechanical, hydraulic and hydraulic component design libraries and allows discovering the impact of each single hydraulic component on the TTR overall behavior. In particular, the 1D model is presented in two levels of progressive physical complexity in order to improve the dynamic damping characteristics. Several physical phenomena are considered, such as the hydraulics volumes pressure dynamics, the contribution of external spring and pressure forces to the dynamic balance of the moving elements, the static and viscous frictions, and the elastic deformations induced by solid boundaries pressure. In this thesis, progressive model validation with different types of measurements is as well presented, covering the individual hydraulic components models as well as the entire shock absorber model. The measurements have been performed on the flow benches and dynamometers available at the Öhlins Racing measurements laboratory. These comparisons, deeply discussed in the thesis, allow discovering the impact of specific physical effects on the low and high speed hydraulic valves static performance and on the shock absorber dynamic behavior. Numerical results show good agreement, especially at low and medium frequencies and symmetric ‘click’ adjustments on compression and rebound sides. Further model development is necessary in the other areas, for example by considering more complex models of the valve dynamics and fluid flow patterns, i.e. flow forces, together with more advanced models of the sealing elements viscous friction, and thermal effects. Finally, the AMESim environments offered a good level of flexibility in designing the TTR hydro-mechanical system, by allowing the user to choose between different levels of model complexity.
|
314 |
Assessing the Hydraulic Transient Performance of Water and Wastewater Systems Using Field and Numerical Modeling DataRadulj, Djordje 27 July 2010 (has links)
A large proportion of water and wastewater systems have traditionally been analyzed and designed without the consideration of the nature, risk, and potential consequence of hydraulic transients. Recent advancements in numerical hydraulic modeling have spawned a specialty hydraulic field based on numerical transient analysis. The current practice within this field often lacks physical understanding and can be misguided by both the current knowledge, technology based limitations, and by the sole reliance on numerical models. This thesis aims to provide insights into some of the shortcomings of current practice and to develop the importance and application of field data based confirmations. The thesis examines the advances in the current field oriented technology for recording transient pressures, and provides examples and insights on how this data can be used both in conjunction with numerical modeling and on its own as a first step to a proposed frequency based transient risk assessment methodology. The thesis establishes definitions and a preliminary methodology for a Transient Risk Index.
|
315 |
Assessing the Hydraulic Transient Performance of Water and Wastewater Systems Using Field and Numerical Modeling DataRadulj, Djordje 27 July 2010 (has links)
A large proportion of water and wastewater systems have traditionally been analyzed and designed without the consideration of the nature, risk, and potential consequence of hydraulic transients. Recent advancements in numerical hydraulic modeling have spawned a specialty hydraulic field based on numerical transient analysis. The current practice within this field often lacks physical understanding and can be misguided by both the current knowledge, technology based limitations, and by the sole reliance on numerical models. This thesis aims to provide insights into some of the shortcomings of current practice and to develop the importance and application of field data based confirmations. The thesis examines the advances in the current field oriented technology for recording transient pressures, and provides examples and insights on how this data can be used both in conjunction with numerical modeling and on its own as a first step to a proposed frequency based transient risk assessment methodology. The thesis establishes definitions and a preliminary methodology for a Transient Risk Index.
|
316 |
Consolidation and Arching Potential of Slurry Backfill2012 December 1900 (has links)
Soil-bentonite (SB) slurry walls are one of the most popular techniques for minimizing the horizontal migration of contaminants. Backfill arching, or “hang-up” of the backfilled slurry, on the wall trench has the potential to significantly reduce the effectiveness of these barriers. This research was conducted to supplement the design and installation of an 11,000 m long slurry wall at PotashCorp’s mine in Rocanville, Saskatchewan. The slurry wall is being installed through low permeability glacial till containing permeable granular zones.
This study was undertaken to improve the understanding of vertical stress distribution in these deep barriers. In particular, the objective of this study was to develop an understanding of the factors controlling arching and hydraulic conductivity (k) of SB walls. Slurry wall “hang-up” or arching is dependent on shear along the wall of the trench and on a coefficient of lateral earth pressure (K). Consolidated drained (CD) shear box tests were conducted to study the shear strength parameters of the backfill mixes. Six inch proctor mold was modified with load cells on the side walls to measure horizontal stresses along with consolidation. This was used to calculate coefficient of lateral earth pressure, K (which is the ratio of horizontal to vertical effective stress). The results of the laboratory testing program found that K was relatively independent of the percentage of fines present in the SB mix. It also showed that backfill angle of internal friction and k of the backfill decreased with increased fines content. The results of the laboratory testing program were used to model the vertical stress distribution in deep walls. An analytical model (discrete model) and a coupled seepage stress-strain finite element model (FEM) were used to predict vertical stress changes with time and depth for the different backfill materials.
The primary conclusion of this research is that slurry wall backfill arching or “hang-up” significantly delays the magnitude and timing of vertical stress build-up in backfill. This loss of vertical stress results in backfill with lower density and higher hydraulic conductivity. The situation was found to be most critical for deep narrow slurry walls. Any advantage in using a coarser graded backfill was offset by higher backfill hydraulic conductivity. The net result is that the upper portions of slurry walls may not be able to achieve their hydraulic conductivity objectives as soon as expected, if at all. In addition, the backfill in the upper portion of the trench may be susceptible to chemical attack and osmotic consolidation. Construction of a 2 m high surcharge berm over the slurry wall was found to increase vertical effective stress and result in significantly lower (2 to 8 times) hydraulic conductivity values in the top 5 metres of the trench. The final hydraulic conductivity (k) at a depth of 5 m was approximately 75 % lower with a surcharge berm. Thus, construction of a surcharge berm over the slurry wall helps to satisfy the k requirement for SB walls and lowers the risk of osmotic consolidation.
|
317 |
Investigation of Created Fracture Geometry through Hydraulic Fracture Treatment AnalysisAhmed, Ibraheem 1987- 14 March 2013 (has links)
Successful development of shale gas reservoirs is highly dependent on hydraulic fracture treatments. Many questions remain in regards to the geometry of the created fractures. Production data analysis from some shale gas wells quantifies a much smaller stimulated pore volume than what would be expected from microseismic evidence and reports of fracturing fluids reaching distant wells. In addition, claims that hydraulic fracturing may open or reopen a network of natural fractures is of particular interest.
This study examines hydraulic fracturing of shale gas formations with specific interest in fracture geometry. Several field cases are analyzed using microseismic analysis as well as net pressure analysis of the fracture treatment. Fracture half lengths implied by microseismic events for some of the stages are several thousand feet in length. The resulting dimensions from microseismic analysis are used for calibration of the treatment model. The fracture profile showing created and propped fracture geometry illustrates that it is not possible to reach the full fracture geometry implied by microseismic given the finite amount of fluid and proppant that was pumped. The model does show however that the created geometry appears to be much larger than half the well spacing. From a productivity standpoint, the fracture will not drain a volume more than that contained in half of the well spacing. This suggests that for the case of closely spaced wells, the treatment size should be reduced to a maximum of half the well spacing.
This study will provide a framework for understanding hydraulic fracture treatments in shale formations. In addition, the results from this study can be used to optimize hydraulic fracture treatment design. Excessively large treatments may represent a less than optimal approach for developing these resources.
|
318 |
Aircraft hydraulic power system diagnostic, prognostics and health managementWang, Jian 01 1900 (has links)
This Individual Research Project (IRP) is the extension research to the group design project (GDP) work which the author has participated in his Msc programme. The GDP objective is to complete the conceptual design of a 200-seat, flying wing civil airliner—FW-11. The next generation aircraft design demands higher reliability, safety and maintainability.
With the development of the vehicle hydraulic system technology, the equipment and systems become more and more complex, their reliability and maintenance become more difficult for designers, manufacturers and customers. To improve the mission reliability and reduce life cycle cost, there is strong demand for the application of health management technology into airframe system design.
In this research, the author introduced diagnostic, prognostic and health management (DPHM) concept into the aircraft hydraulic power system development. As a brand new technology, it is a challenge to apply the DPHM techniques to on-board system. Firstly, an assumed hydraulic power system was designed for FW-11 by the author and used as the case in his IRP research. Then the crucial components and key parameters needed to be monitored were obtained based on Function Hazard Analysis and Failure Modes Effects Analysis of this system. The writer compared a few diagnostic and prognostic methods in detail, and then selected suitable ones for a hydraulic power system. A diagnostic process was applied to the hydraulic power system using a Case-based reasoning (CBR) approach, whilst a hybrid prognostic method was suggested for the system. After that, a diagnostic, prognostic and health management (DPHM) architecture of the hydraulic power system was designed at system level based on the diagnostic and prognostic research. The whole research work provided a general and practical instruction for hydraulic system design by means of DPHM application.
|
319 |
Volume Changes during Fracture Injection of BiosolidsXia, Guowei 27 April 2007 (has links)
The term biosolids refers to the nutrient-rich organic materials resulting from the treatment of domestic sewage at a wastewater treatment facility. It is a widely acceptable term for sewage sludge that has been treated at a wastewater treatment plant and is beneficially recycled. Biosolids inherently come from sewage sludge, so they have the same origin and biological nature, but a different applicability. The quantity of municipal biosolids produced increases annually in the United States. The production of biosolids has increased because of both the advance of sanitation and wastewater treatment and the growth of population.
Sludge or biosolids are contaminated by varying amounts of heavy metals or hazardous organic compounds from industrial and commercial wastewater. Therefore, society has to face the potential for increased negative impacts on the environment from the increasing volume of biosolids being produced. Public concerns about applied biosolids treatment or reuse methods are potential health, environmental, or aesthetic impacts (such things as disease, odors), because of the pollutants in the biosolids.
The most commonly used methods for biosolids treatment and recycling are briefly reviewed in the first two chapters of this thesis. However, the current biosolids treatment or recycling options have their own defects. A new and innovative technology, deep biosolids injection, is proposed for the treatment of biosolids and is to be implemented by Los Angeles where the City has been granted underground solids injection control permits under Class V wells by the US Environmental Protection Agency.
Deep biosolids injection is a process referred to as one type of several deep underground injection techniques. It shares many similarities with slurried solids injection above the fracture pressure, which has been successfully used for the treatment of slurried non-hazardous solid materials produced in the oil industry such as drill cuttings, viscous emulsions with clay, oily sand, NORMs (naturally occurring radioactive materials), pipe scale, tank bottoms, soil from spill clean-up, and so on.
The distinctive biosolids properties result in injection mechanisms different from other slurry injection processes. Filtration and consolidation processes occur simultaneously along with injection of biosolids, and these must be understood in order to properly design and manage a biosolids injection operation. Hydraulic fracture mechanisms, filtration theory and consolidation principles provide the basis for the interpretation of biosolids injection process.
A semi-analytical hydraulic fracture model for injection of a compressible substance (biosolids) is developed as a modification of the Perkins-Kern-Nordgren (PKN) hydraulic fracture model. The PKN model is modified with a pseudo-dynamic leak-off function that describes the deposition of biosolids (filtration) and plugging effect of biosolids on the fracture wall in a porous medium. The pseudo-dynamic leak-off function is given in terms of the net pressure and the resistance of the filter cake to flow. The hydraulic fracture model is employed to compute the volume of biosolids slurry remaining in an open induced fracture. The consolidation process in the closure phase of deep biosolids injection is described using the biosolids properties under different stress conditions. A Terzaghi-type relationship is used to compute the volume change in the closure phase using compressibility data available from published literature.
In contrast to the conventional PKN leak-off model, simulation results using the new model show that the induced fracture volume is much larger because of the impaired leak-off and because of the volumetric effects and consolidation of the biosolids in the fracture. Solids contents and biosolids compaction behavior have significant impacts on the geometry of fracture (width, length, volume) over time. The model was developed to help guide large-scale injection of municipal and animal biosolids as an environmentally more secure method of treatment than surface approaches.
|
320 |
Volume Changes during Fracture Injection of BiosolidsXia, Guowei 27 April 2007 (has links)
The term biosolids refers to the nutrient-rich organic materials resulting from the treatment of domestic sewage at a wastewater treatment facility. It is a widely acceptable term for sewage sludge that has been treated at a wastewater treatment plant and is beneficially recycled. Biosolids inherently come from sewage sludge, so they have the same origin and biological nature, but a different applicability. The quantity of municipal biosolids produced increases annually in the United States. The production of biosolids has increased because of both the advance of sanitation and wastewater treatment and the growth of population.
Sludge or biosolids are contaminated by varying amounts of heavy metals or hazardous organic compounds from industrial and commercial wastewater. Therefore, society has to face the potential for increased negative impacts on the environment from the increasing volume of biosolids being produced. Public concerns about applied biosolids treatment or reuse methods are potential health, environmental, or aesthetic impacts (such things as disease, odors), because of the pollutants in the biosolids.
The most commonly used methods for biosolids treatment and recycling are briefly reviewed in the first two chapters of this thesis. However, the current biosolids treatment or recycling options have their own defects. A new and innovative technology, deep biosolids injection, is proposed for the treatment of biosolids and is to be implemented by Los Angeles where the City has been granted underground solids injection control permits under Class V wells by the US Environmental Protection Agency.
Deep biosolids injection is a process referred to as one type of several deep underground injection techniques. It shares many similarities with slurried solids injection above the fracture pressure, which has been successfully used for the treatment of slurried non-hazardous solid materials produced in the oil industry such as drill cuttings, viscous emulsions with clay, oily sand, NORMs (naturally occurring radioactive materials), pipe scale, tank bottoms, soil from spill clean-up, and so on.
The distinctive biosolids properties result in injection mechanisms different from other slurry injection processes. Filtration and consolidation processes occur simultaneously along with injection of biosolids, and these must be understood in order to properly design and manage a biosolids injection operation. Hydraulic fracture mechanisms, filtration theory and consolidation principles provide the basis for the interpretation of biosolids injection process.
A semi-analytical hydraulic fracture model for injection of a compressible substance (biosolids) is developed as a modification of the Perkins-Kern-Nordgren (PKN) hydraulic fracture model. The PKN model is modified with a pseudo-dynamic leak-off function that describes the deposition of biosolids (filtration) and plugging effect of biosolids on the fracture wall in a porous medium. The pseudo-dynamic leak-off function is given in terms of the net pressure and the resistance of the filter cake to flow. The hydraulic fracture model is employed to compute the volume of biosolids slurry remaining in an open induced fracture. The consolidation process in the closure phase of deep biosolids injection is described using the biosolids properties under different stress conditions. A Terzaghi-type relationship is used to compute the volume change in the closure phase using compressibility data available from published literature.
In contrast to the conventional PKN leak-off model, simulation results using the new model show that the induced fracture volume is much larger because of the impaired leak-off and because of the volumetric effects and consolidation of the biosolids in the fracture. Solids contents and biosolids compaction behavior have significant impacts on the geometry of fracture (width, length, volume) over time. The model was developed to help guide large-scale injection of municipal and animal biosolids as an environmentally more secure method of treatment than surface approaches.
|
Page generated in 0.053 seconds